IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/6222.html
   My bibliography  Save this paper

Option Hedging Using Empirical Pricing Kernels

Author

Listed:
  • Joshua V. Rosenberg
  • Robert F. Engle

Abstract

This paper develops a method for option hedging which is consistent with time-varying preferences and probabilities. The preferences are expressed in the form of an empirical pricing kernel (EPK), which measures the state price per unit probability, while probabilities are derived from an estimated stochastic volatility model of the form GARCH components with leverage. State prices are estimated using the flexible risk-neutral density method of Rosenberg (1995) and a daily cross-section of option premia. Time-varying preferences over states are linked to a dynamic model of the underlying price to obtain a one-day ahead forecast of derivative price distributions and minimum variance hedge ratios. Empirical results suggest that risk aversion over S&P500 return states is substantially higher than risk aversion implied by Black-Scholes state prices and probabilities using long run estimates of S&P500 return moments. It is also found that the daily level of risk aversion is strongly positively autocorrelated, negatively correlated with S&P500 price changes,and positively correlated with the spread between implied and objective volatilities. Hedging results reveal that typical hedging techniques for out-of-the-money S&P500 index options, such as Black-Scholes or historical minimum variance hedging, are inferior to the EPK hedging method. Thus, time-varying preferences and probabilities appear to be an important factor in the day-to-day pricing of S&P500 options.

Suggested Citation

  • Joshua V. Rosenberg & Robert F. Engle, 1997. "Option Hedging Using Empirical Pricing Kernels," NBER Working Papers 6222, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:6222
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w6222.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Singleton, Kenneth J, 1983. "Stochastic Consumption, Risk Aversion, and the Temporal Behavior of Asset Returns," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 249-265, April.
    2. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    3. Rosenberg, Joshua V., 1998. "Pricing multivariate contingent claims using estimated risk-neutral density functions," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 229-247, April.
    4. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1996. "Implied Volatility Functions: Empirical Tests," NBER Working Papers 5500, National Bureau of Economic Research, Inc.
    5. Russell P. Robins & Barry Schachter, 1994. "An Analysis of the Risk in Discretely Rebalanced Option Hedges and Delta-Based Techniques," Management Science, INFORMS, vol. 40(6), pages 798-808, June.
    6. Stapleton, Richard C & Subrahmanyam, Marti G, 1984. " The Valuation of Options When Asset Returns Are Generated by a Binomial Process," Journal of Finance, American Finance Association, vol. 39(5), pages 1525-1539, December.
    7. John H. Cochrane & Lars Peter Hansen, 1992. "Asset Pricing Explorations for Macroeconomics," NBER Chapters,in: NBER Macroeconomics Annual 1992, Volume 7, pages 115-182 National Bureau of Economic Research, Inc.
    8. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    9. Dumas, Bernard J & Fleming, Jeff & Whaley, Robert E, 1996. "Implied Volatility Functions: Empirical Tests," CEPR Discussion Papers 1369, C.E.P.R. Discussion Papers.
    10. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
    11. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    12. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    13. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    14. Gallant, A. Ronald & Hansen, Lars Peter & Tauchen, George, 1990. "Using conditional moments of asset payoffs to infer the volatility of intertemporal marginal rates of substitution," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 141-179.
    15. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    2. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    3. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    4. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:6222. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.