IDEAS home Printed from
   My bibliography  Save this paper

Implied Volatility Functions: Empirical Tests


  • Bernard Dumas
  • Jeff Fleming
  • Robert E. Whaley


Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black-Scholes constant volatility assumption is violated in practice. These authors hypothesize that the volatility of the underlying asset's return is a deterministic function of the asset price and time and develop the deterministic volatility function (DVF) option valuation model, which has the potential of fitting the observed cross-section of option prices exactly. Using a sample of S&P 500 index options during the period June 1988 through December 1993, we evaluate the economic significance of the implied deterministic volatility function by examining the predictive and hedging performance of the DV option valuation model. We find that its performance is worse than that of an ad hoc Black-Scholes model with variable implied volatilities.

Suggested Citation

  • Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1996. "Implied Volatility Functions: Empirical Tests," NBER Working Papers 5500, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:5500
    Note: AP

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    2. Whaley, Robert E., 1982. "Valuation of American call options on dividend-paying stocks : Empirical tests," Journal of Financial Economics, Elsevier, vol. 10(1), pages 29-58, March.
    3. repec:crs:wpaper:9329 is not listed on IDEAS
    4. Harvey, Campbell R & Whaley, Robert E, 1991. " S&P 100 Index Option Volatility," Journal of Finance, American Finance Association, vol. 46(4), pages 1251-1261, September.
    5. Robert J. Shiller, 1992. "Market Volatility," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691515, January.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    8. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    9. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "Theory of Rational Option Pricing: II (Revised: 1-96)," Rodney L. White Center for Financial Research Working Papers 11-95, Wharton School Rodney L. White Center for Financial Research.
    10. Lo, Andrew W., 1986. "Statistical tests of contingent-claims asset-pricing models : A new methodology," Journal of Financial Economics, Elsevier, vol. 17(1), pages 143-173, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zsembery, Levente, 2003. "A volatilitás előrejelzése és a visszaszámított modellek
      [Forecasting of volatility and implied models]
      ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 519-542.
    2. Robert Tompkins, 2001. "Implied volatility surfaces: uncovering regularities for options on financial futures," The European Journal of Finance, Taylor & Francis Journals, vol. 7(3), pages 198-230.
    3. Rama CONT, 1998. "Beyond implied volatility: extracting information from option prices," Finance 9804002, EconWPA.
    4. Garcia, R. & Renault, E., 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    6. David S. Bates, 1997. "Post-'87 Crash Fears in S&P 500 Futures Options," NBER Working Papers 5894, National Bureau of Economic Research, Inc.
    7. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    8. Joshua V. Rosenberg & Robert F. Engle, 1997. "Option Hedging Using Empirical Pricing Kernels," NBER Working Papers 6222, National Bureau of Economic Research, Inc.
    9. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, issue Dec, pages 21-35.
    10. Steven L. Heston & Saikat Nandi, 1997. "A closed-form GARCH option pricing model," FRB Atlanta Working Paper 97-9, Federal Reserve Bank of Atlanta.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:5500. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.