IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2003-5.html
   My bibliography  Save this paper

Implicit Bayesian Inference Using Option Prices

Author

Listed:
  • Gael M. Martin

    ()

  • Catherine S. Forbes

    ()

  • Vance L. Martin

Abstract

A Bayesian approach to option pricing is presented, in which posterior inference about the underlying returns process is conducted implicitly via observed option prices. A range of models allowing for conditional leptokurtosis, skewness and time-varying volatility in returns are considered, with posterior parameter distributions and model probabilities backed out from the option prices. Models are ranked according to several criteria, including out-of-sample fit, predictive and hedging performance. The methodology accommodates heteroscedasticity and autocorrelation in the option pricing errors, as well as regime shifts across contract groups. The method is applied to intraday option price data on the S&P500 stock index for 1995. Whilst the results provide support for models which accommodate leptokurtosis, no one model dominates according to all criteria considered.

Suggested Citation

  • Gael M. Martin & Catherine S. Forbes & Vance L. Martin, 2003. "Implicit Bayesian Inference Using Option Prices," Monash Econometrics and Business Statistics Working Papers 5/03, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2003-5
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2003/wp5-03.pdf
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    2. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    3. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    4. C.S. Forbes & G.M. Martin & J. Wright, 2002. "Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices," Monash Econometrics and Business Statistics Working Papers 2/02, Monash University, Department of Econometrics and Business Statistics.
    5. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    6. Shu Wing Ho & Alan Lee & Alastair Marsden, 2011. "Use of Bayesian Estimates to determine the Volatility Parameter Input in the Black-Scholes and Binomial Option Pricing Models," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 4(1), pages 1-23, December.
    7. Fry-McKibbin, Renée & Martin, Vance L. & Tang, Chrismin, 2014. "Financial contagion and asset pricing," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 296-308.
    8. Anthony D. Hall & Paul Kofman & Steve Manaster, 2001. "Migration of Price Discovery With Constrained Futures Markets," Research Paper Series 70, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Keywords

    Bayesian Option Pricing; Leptokurtosis; Skewness; GARCH Option Pricing; Option Price Prediction; Hedging Errors.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2003-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.