IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Bayesian option pricing using asymmetric GARCH models

  • Bauwens, Luc
  • Lubrano, Michel

This paper shows how one can compute option prices from a Bayesian inference view point, using a GARCH model for the dynamics of the the volatility of the underlying asset. The proposed evaluation of an option is the predictive expectation of its payoff function. The predictive distribution of this function provides a natural metric, provided it is neutralised with respect to the risk, for gauging the predictive option price or other option evaluations. The proposed method is compared to the Black and Scholes evaluation, in which a marginal mean volatility is plugged, but which does not provide a natural metric. The methods are illustrated using symmetric, asymmetric and smooth transition GARCH models with data on a stock index in Brussels.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VFG-44RNPH3-2/2/974831d13ed495933ced7f945df473ec
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Empirical Finance.

Volume (Year): 9 (2002)
Issue (Month): 3 (August)
Pages: 321-342

as
in new window

Handle: RePEc:eee:empfin:v:9:y:2002:i:3:p:321-342
Contact details of provider: Web page: http://www.elsevier.com/locate/jempfin

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bauwens, L. & Lubrano, M., 1996. "Bayesian Inference on GARCH Models Using the Gibbs Sampler," G.R.E.Q.A.M. 96a21, Universite Aix-Marseille III.
  2. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  3. Jan Kallsen & Murad S. Taqqu, 1998. "Option Pricing in ARCH-type Models," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 13-26.
  4. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
  5. Michel LUBRANO, 2001. "Smooth Transition Garch Models : a Baysian Perspective," Discussion Papers (REL - Recherches Economiques de Louvain) 2001032, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  6. René Garcia & Éric Renault, 1997. "A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models," CIRANO Working Papers 97s-13, CIRANO.
  7. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  8. Hafner, Christian M. & Herwartz, Helmut, 2001. "Option pricing under linear autoregressive dynamics, heteroskedasticity, and conditional leptokurtosis," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 1-34, March.
  9. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S19-40, Suppl. De.
  10. Ronald J. Mahieu & Peter C. Schotman, 1998. "An empirical application of stochastic volatility models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 333-360.
  11. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  12. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  13. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  14. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:9:y:2002:i:3:p:321-342. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.