IDEAS home Printed from https://ideas.repec.org/p/fth/nystfi/96-36.html

Pricing Multivariate Contingent Claims Using Estimated Risk-neutral Density Functions

Author

Listed:
  • Joshua Rosenberg

Abstract

Many asset price series exhibit time-varying volatility, jumps, and other features inconsistent with assumptions about the underlying price process made by standard multivariate contingent claims (MVCC) pricing models. This paper develops an interpolative technique for pricing MVCCs ' flexible NLS pricing ' that involves the estimation of a flexible multivariate risk-neutral density function implied by existing asset prices. As an application, the flexible NLS pricing technique is used to value several bivariate contingent claims dependent on foreign exchange rates in 1993 and 1994. The bivariate flexible risk-neutral density function more accurately prices existing options than the bivariate lognormal density implied by a multivariate geometric brownian motion. In addition, the bivariate contingent claims analyzed have substantially different prices using the two density functions suggesting flexible NLS pricing may improve accuracy over standard methods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Joshua Rosenberg, 1996. "Pricing Multivariate Contingent Claims Using Estimated Risk-neutral Density Functions," New York University, Leonard N. Stern School Finance Department Working Paper Seires 96-36, New York University, Leonard N. Stern School of Business-.
  • Handle: RePEc:fth:nystfi:96-36
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    2. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
    3. Carluccio Bianchi & Alessandro Carta & Dean Fantazzini & Maria Elena De Giuli & Mario Maggi, 2010. "A copula-VAR-X approach for industrial production modelling and forecasting," Applied Economics, Taylor & Francis Journals, vol. 42(25), pages 3267-3277.
    4. Yu, Shiwei & Li, Zhenxi & Wei, Yi-Ming & Liu, Lancui, 2019. "A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes," Energy, Elsevier, vol. 189(C).
    5. Nikkinen, Jussi, 2003. "Normality tests of option-implied risk-neutral densities: evidence from the small Finnish market," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 99-116.
    6. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    7. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.
    8. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    9. Foad Shokrollahi, 2017. "Fractional delta hedging strategy for pricing currency options with transaction costs," Papers 1702.00037, arXiv.org.
    10. van den Goorbergh, R.W.J., 2004. "Essays on optimal hedging and investment strategies and on derivative pricing," Other publications TiSEM 4b4b16af-8621-463f-bbfa-0, Tilburg University, School of Economics and Management.
    11. Joshua V. Rosenberg & Robert F. Engle, 1997. "Option Hedging Using Empirical Pricing Kernels," NBER Working Papers 6222, National Bureau of Economic Research, Inc.
    12. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    13. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
    14. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    15. Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, University of Reading.
    16. van den Goorbergh, R.W.J. & Genest, C. & Werker, B.J.M., 2003. "Multivariate Option Pricing Using Dynamic Copula Models," Discussion Paper 2003-122, Tilburg University, Center for Economic Research.
    17. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, University Library of Munich, Germany.
    18. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
    19. van den Goorbergh, R.W.J. & Genest, C. & Werker, B.J.M., 2003. "Multivariate Option Pricing Using Dynamic Copula Models," Other publications TiSEM 86ec50af-0fb6-4782-b2dd-d, Tilburg University, School of Economics and Management.
    20. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    21. Rob van den Goorbergh, 2004. "A Copula-Based Autoregressive Conditional Dependence Model of International Stock Markets," DNB Working Papers 022, Netherlands Central Bank, Research Department.
    22. Joshua Rosenberg, 1999. "Semiparametric Pricing of Multivariate Contingent Claims," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-028, New York University, Leonard N. Stern School of Business-.
    23. Gael M. Martin & Catherine S. Forbes & Vance L. Martin, 2005. "Implicit Bayesian Inference Using Option Prices," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 437-462, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:nystfi:96-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fdnyuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.