IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2000-5.html
   My bibliography  Save this paper

Implicit Bayesian Inference Using Option Prices

Author

Abstract

A Bayesian approach to option pricing is presented, in which posterior inference about the underlying returns process is conducted implicitly, via observed option prices. A range of models which allow for conditional leptokurtosis, skewness and time-varying volatility in returns, are considered, with posterior parameter distributions and model probabilities backed out from the option prices. Fit, predictive and hedging densities associated with the different models are produced. Models are ranked according to several criteria, including their ability to fit observed option prices, predict future option prices and minimize hedging errors. In addition to model-specific results, averaged predictive and hedging densities are produced, the weights used in the averaging process being the posterior model probabilities. The method is applied to option price data on the S&P500 stock index. Whilst the results provide some support for the Black-Scholes model, no one model dominates according to all criteria considered.

Suggested Citation

  • Martin, G.M. & Forbes, C.S. & Martin, V.L., 2000. "Implicit Bayesian Inference Using Option Prices," Monash Econometrics and Business Statistics Working Papers 5/00, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2000-5
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2000/wp5-00.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    2. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    3. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    4. C.S. Forbes & G.M. Martin & J. Wright, 2002. "Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices," Monash Econometrics and Business Statistics Working Papers 2/02, Monash University, Department of Econometrics and Business Statistics.
    5. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    6. Shu Wing Ho & Alan Lee & Alastair Marsden, 2011. "Use of Bayesian Estimates to determine the Volatility Parameter Input in the Black-Scholes and Binomial Option Pricing Models," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 4(1), pages 1-23, December.
    7. Fry-McKibbin, Renée & Martin, Vance L. & Tang, Chrismin, 2014. "Financial contagion and asset pricing," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 296-308.
    8. Anthony D. Hall & Paul Kofman & Steve Manaster, 2001. "Migration of Price Discovery With Constrained Futures Markets," Research Paper Series 70, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Keywords

    Bayesian Implicit Inference; Option Pricing Errors; Option Price Prediction; Hedging Errors; Nonnormal Returns Models; GARCH; Bayesian Model averaging.;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2000-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.