IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2000-5.html
   My bibliography  Save this paper

Implicit Bayesian Inference Using Option Prices

Author

Abstract

A Bayesian approach to option pricing is presented, in which posterior inference about the underlying returns process is conducted implicitly, via observed option prices. A range of models which allow for conditional leptokurtosis, skewness and time-varying volatility in returns, are considered, with posterior parameter distributions and model probabilities backed out from the option prices. Fit, predictive and hedging densities associated with the different models are produced. Models are ranked according to several criteria, including their ability to fit observed option prices, predict future option prices and minimize hedging errors. In addition to model-specific results, averaged predictive and hedging densities are produced, the weights used in the averaging process being the posterior model probabilities. The method is applied to option price data on the S&P500 stock index. Whilst the results provide some support for the Black-Scholes model, no one model dominates according to all criteria considered.

Suggested Citation

  • Martin, G.M. & Forbes, C.S. & Martin, V.L., 2000. "Implicit Bayesian Inference Using Option Prices," Monash Econometrics and Business Statistics Working Papers 5/00, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2000-5
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2000/wp5-00.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    3. Jacquier, Eric & Jarrow, Robert, 2000. "Bayesian analysis of contingent claim model error," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 145-180.
    4. Hafner, Christian M. & Herwartz, Helmut, 2001. "Option pricing under linear autoregressive dynamics, heteroskedasticity, and conditional leptokurtosis," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 1-34, March.
    5. Rosenberg, Joshua V., 1998. "Pricing multivariate contingent claims using estimated risk-neutral density functions," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 229-247, April.
    6. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    7. Lim, G. C. & Lye, J. N. & Martin, G. M. & Martin*, V. L., 1998. "The distribution of exchange rate returns and the pricing of currency options," Journal of International Economics, Elsevier, vol. 45(2), pages 351-368, August.
    8. Jenny N. Lye & Vance L. Martin, 1994. "Non‐Linear Time Series Modelling And Distributional Flexibility," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(1), pages 65-84, January.
    9. Pastorello, Sergio & Renault, Eric & Touzi, Nizar, 2000. "Statistical Inference for Random-Variance Option Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 358-367, July.
    10. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    11. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Bauwens, Luc & Lubrano, Michel, 2002. "Bayesian option pricing using asymmetric GARCH models," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 321-342, August.
    14. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    15. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    16. Engle, Robert F. & Mustafa, Chowdhury, 1992. "Implied ARCH models from options prices," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 289-311.
    17. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    18. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    19. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    20. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    21. Boyle, Phelim P. & Ananthanarayanan, A. L., 1977. "The impact of variance estimation in option valuation models," Journal of Financial Economics, Elsevier, vol. 5(3), pages 375-387, December.
    22. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    23. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
    24. Joshua V. Rosenberg & Robert F. Engle, 1997. "Option Hedging Using Empirical Pricing Kernels," NBER Working Papers 6222, National Bureau of Economic Research, Inc.
    25. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    2. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    3. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    4. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    5. Catherine S. Forbes & Gael M. Martin & Jill Wright, 2007. "Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 387-418.
    6. Fry-McKibbin, Renée & Martin, Vance L. & Tang, Chrismin, 2014. "Financial contagion and asset pricing," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 296-308.
    7. Anthony D. Hall & Paul Kofman & Steve Manaster, 2001. "Migration of Price Discovery With Constrained Futures Markets," Research Paper Series 70, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. C.S. Forbes & G.M. Martin & J. Wright, 2002. "Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices," Monash Econometrics and Business Statistics Working Papers 2/02, Monash University, Department of Econometrics and Business Statistics.
    9. Shu Wing Ho & Alan Lee & Alastair Marsden, 2011. "Use of Bayesian Estimates to determine the Volatility Parameter Input in the Black-Scholes and Binomial Option Pricing Models," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 4(1), pages 1-23, December.
    10. Lisha Lin & Yaqiong Li & Rui Gao & Jianhong Wu, 2019. "The Numerical Simulation of Quanto Option Prices Using Bayesian Statistical Methods," Papers 1910.04075, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.
    2. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    3. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    4. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    5. Catherine S. Forbes & Gael M. Martin & Jill Wright, 2007. "Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 387-418.
    6. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    7. Xinglin Yang, 2018. "Good jump, bad jump, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1097-1125, September.
    8. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    9. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
    12. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    13. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    16. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    17. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
    18. Rubio Irigoyen, Gonzalo & Ferreira García, María Eva & Gago, Mónica & León, Angel, 2002. "An empirical comparison of the performance of alternative option pricing models," DFAEII Working Papers 2002-04, University of the Basque Country - Department of Foundations of Economic Analysis II.
    19. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    20. Liu, Yanxin & Li, Johnny Siu-Hang & Ng, Andrew Cheuk-Yin, 2015. "Option pricing under GARCH models with Hansen's skewed-t distributed innovations," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 108-125.
    21. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.

    More about this item

    Keywords

    Bayesian Implicit Inference; Option Pricing Errors; Option Price Prediction; Hedging Errors; Nonnormal Returns Models; GARCH; Bayesian Model averaging.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2000-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.