IDEAS home Printed from https://ideas.repec.org/a/oup/rfinst/v21y2008i5p2345-2378.html
   My bibliography  Save this article

A Bayesian Analysis of Return Dynamics with Lévy Jumps

Author

Listed:
  • Haitao Li
  • Martin T. Wells
  • Cindy L. Yu

Abstract

We have developed Bayesian Markov chain Monte Carlo (MCMC) methods for inferences of continuous-time models with stochastic volatility and infinite-activity Lévy jumps using discretely sampled data. Simulation studies show that (i) our methods provide accurate joint identification of diffusion, stochastic volatility, and Lévy jumps, and (ii) the affine jump-diffusion (AJD) models fail to adequately approximate the behavior of infinite-activity jumps. In particular, the AJD models fail to capture the "infinitely many" small Lévy jumps, which are too big for Brownian motion to model and too small for compound Poisson process to capture. Empirical studies show that infinite-activity Lévy jumps are essential for modeling the S&P 500 index returns. The Author 2006. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org, Oxford University Press.

Suggested Citation

  • Haitao Li & Martin T. Wells & Cindy L. Yu, 2008. "A Bayesian Analysis of Return Dynamics with Lévy Jumps," Review of Financial Studies, Society for Financial Studies, vol. 21(5), pages 2345-2378, September.
  • Handle: RePEc:oup:rfinst:v:21:y:2008:i:5:p:2345-2378
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/rfs/hhl036
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. repec:eee:jbfina:v:83:y:2017:i:c:p:85-103 is not listed on IDEAS
    3. Andreas Kaeck & Carol Alexander, 2010. "Stochastic Volatility Jump-Diffusions for Equity Index Dynamics," ICMA Centre Discussion Papers in Finance icma-dp2010-06, Henley Business School, Reading University.
    4. Carol Alexander & Andreas Kaeck, 2012. "Does model fit matter for hedging? Evidence from FTSE 100 options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(7), pages 609-638, July.
    5. Kaeck, Andreas, 2013. "Asymmetry in the jump-size distribution of the S&P 500: Evidence from equity and option markets," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1872-1888.
    6. Erdemlioglu, Deniz & Laurent, Sébastien & Neely, Christopher J., 2015. "Which continuous-time model is most appropriate for exchange rates?," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 256-268.
    7. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    8. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    9. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, Elsevier.
    10. Xiaodong Du & Dermot J. Hayes & Cindy L. Yu, 2010. "Dynamics of Biofuel Stock Prices: A Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 418-425.
    11. Chul-Yong Lee & Sung-Yoon Huh, 2017. "Forecasting Long-Term Crude Oil Prices Using a Bayesian Model with Informative Priors," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-15, January.
    12. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    13. Lee, Suzanne S. & Mykland, Per A., 2012. "Jumps in equilibrium prices and market microstructure noise," Journal of Econometrics, Elsevier, vol. 168(2), pages 396-406.
    14. Ruan, Xinfeng & Zhu, Wenli & Huang, Jiexiang & Zhang, Jin E., 2016. "Equilibrium asset pricing under the Lévy process with stochastic volatility and moment risk premiums," Economic Modelling, Elsevier, vol. 54(C), pages 326-338.
    15. Gurdip Bakshi & Liuren Wu, 2010. "The Behavior of Risk and Market Prices of Risk Over the Nasdaq Bubble Period," Management Science, INFORMS, vol. 56(12), pages 2251-2264, December.
    16. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    17. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    18. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    19. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    20. repec:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-016-2180-x is not listed on IDEAS
    21. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:rfinst:v:21:y:2008:i:5:p:2345-2378. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfsssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.