IDEAS home Printed from https://ideas.repec.org/a/oup/rfinst/v21y2008i5p2345-2378.html
   My bibliography  Save this article

A Bayesian Analysis of Return Dynamics with Lévy Jumps

Author

Listed:
  • Haitao Li
  • Martin T. Wells
  • Cindy L. Yu

Abstract

We have developed Bayesian Markov chain Monte Carlo (MCMC) methods for inferences of continuous-time models with stochastic volatility and infinite-activity Lévy jumps using discretely sampled data. Simulation studies show that (i) our methods provide accurate joint identification of diffusion, stochastic volatility, and Lévy jumps, and (ii) the affine jump-diffusion (AJD) models fail to adequately approximate the behavior of infinite-activity jumps. In particular, the AJD models fail to capture the "infinitely many" small Lévy jumps, which are too big for Brownian motion to model and too small for compound Poisson process to capture. Empirical studies show that infinite-activity Lévy jumps are essential for modeling the S&P 500 index returns. The Author 2006. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org, Oxford University Press.

Suggested Citation

  • Haitao Li & Martin T. Wells & Cindy L. Yu, 2008. "A Bayesian Analysis of Return Dynamics with Lévy Jumps," The Review of Financial Studies, Society for Financial Studies, vol. 21(5), pages 2345-2378, September.
  • Handle: RePEc:oup:rfinst:v:21:y:2008:i:5:p:2345-2378
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/rfs/hhl036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:rfinst:v:21:y:2008:i:5:p:2345-2378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.