IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Implied volatility from options on gold futures: do statistical forecasts add value or simply paint the lilly?

  • Christopher J. Neely

Consistent with findings in other markets, implied volatility is a biased predictor of the realized volatility of gold futures. No existing explanation—including a price of volatility risk—can completely explain the bias, but much of this apparent bias can be explained by persistence and estimation error in implied volatility. Statistical criteria reject the hypothesis that implied volatility is informationally efficient with respect to econometric forecasts. But delta hedging exercises indicate that such econometric forecasts have no incremental economic value. Thus, statistical measures of bias and information efficiency are misleading measures of the information content of option prices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://research.stlouisfed.org/wp/more/2003-018/
Download Restriction: no

File URL: http://research.stlouisfed.org/wp/2003/2003-018.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of St. Louis in its series Working Papers with number 2003-018.

as
in new window

Length:
Date of creation: 2004
Date of revision:
Handle: RePEc:fip:fedlwp:2003-018
Contact details of provider: Postal: P.O. Box 442, St. Louis, MO 63166
Fax: (314)444-8753
Web page: http://www.stlouisfed.org/

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  2. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-81, May.
  3. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
  4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  5. Ball, Clifford A. & Torous, Walter N. & Tschoegl, Adrian E., 1985. "An empirical investigation of the EOE gold options market," Journal of Banking & Finance, Elsevier, vol. 9(1), pages 101-113, March.
  6. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  7. Robert F. Engle & Joshua Rosenberg, 1998. "Testing the Volatility Term Structure using Option Hedging Criteria," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-031, New York University, Leonard N. Stern School of Business-.
  8. Steven P. Feinstein, 1988. "A source of unbiased implied volatility forecasts," Working Paper 88-9, Federal Reserve Bank of Atlanta.
  9. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
  10. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
  11. N. Gregory Mankiw & Matthew D. Shapiro, 1985. "Do We Reject Too Often? Small Sample Properties of Tests of Rational Expectations Models," NBER Technical Working Papers 0051, National Bureau of Economic Research, Inc.
  12. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-28, June.
  13. Jeremy Berkowitz & Lorenzo Giorgianni, 2001. "Long-Horizon Exchange Rate Predictability?," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 81-91, February.
  14. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
  15. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
  16. Black, Fischer & Scholes, Myron S, 1972. "The Valuation of Option Contracts and a Test of Market Efficiency," Journal of Finance, American Finance Association, vol. 27(2), pages 399-417, May.
  17. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  18. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
  19. Christopher J. Neely & Paul A. Weller, 2001. "Predicting exchange rate volatility: genetic programming vs. GARCH and RiskMetrics," Working Papers 2001-009, Federal Reserve Bank of St. Louis.
  20. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
  21. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. " Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-20, June.
  22. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-18, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2003-018. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Xiao)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.