IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v68y1999i1p96-119.html
   My bibliography  Save this article

Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes

Author

Listed:
  • Horváth, Lajos
  • Kokoszka, Piotr
  • Steinebach, Josef

Abstract

We develop procedures for testing for changes in the mean of multivariatem-dependent stationary processes. Several test statistics are considered and corresponding limit theorems are derived. These include functional and Darling-Erdos type limit theorems. The tests are shown to be consistent under alternatives of abrupt and gradual changes in the mean. Finite sample performance is examined by means of a simulation study, and the procedures are applied to the analysis of the average monthly temperatures in Prague.

Suggested Citation

  • Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 1999. "Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 96-119, January.
  • Handle: RePEc:eee:jmvana:v:68:y:1999:i:1:p:96-119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91780-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steinebach, Josef & Eastwood, Vera R., 1996. "Extreme Value Asymptotics for Multivariate Renewal Processes," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 284-302, February.
    2. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horváth, Lajos & Husková, Marie & Kokoszka, Piotr, 2010. "Testing the stability of the functional autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 352-367, February.
    2. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    3. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    4. Ayyala, Deepak Nag & Park, Junyong & Roy, Anindya, 2017. "Mean vector testing for high-dimensional dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 136-155.
    5. Aston, John A.D. & Kirch, Claudia, 2012. "Detecting and estimating changes in dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 204-220.
    6. Elena Andreou & Eric Ghysels, 2002. "Tests for Breaks in the Conditional Co-movements of Asset Returns," CIRANO Working Papers 2002s-59, CIRANO.
    7. Wang Lihong, 2003. "Limit theorems in change-point problems with multivariate long-range dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 21(3/2003), pages 283-300, March.
    8. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
    9. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    10. Leonid Torgovitski, 2015. "A Darling–Erdős-type CUSUM-procedure for functional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 1-27, January.
    11. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:68:y:1999:i:1:p:96-119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.