IDEAS home Printed from
   My bibliography  Save this article

Testing the stability of the functional autoregressive process


  • Horváth, Lajos
  • Husková, Marie
  • Kokoszka, Piotr


The functional autoregressive process has become a useful tool in the analysis of functional time series data. It is defined by the equation , in which the observations Xn and errors [epsilon]n are curves, and is an operator. To ensure meaningful inference and prediction based on this model, it is important to verify that the operator does not change with time. We propose a method for testing the constancy of against a change-point alternative which uses the functional principal component analysis. The test statistic is constructed to have a well-known asymptotic distribution, but the asymptotic justification of the procedure is very delicate. We develop a new truncation approach which together with Mensov's inequality can be used in other problems of functional time series analysis. The estimation of the principal components introduces asymptotically non-negligible terms, which however cancel because of the special form of our test statistic (CUSUM type). The test is implemented using the R package fda, and its finite sample performance is examined by application to credit card transaction data.

Suggested Citation

  • Horváth, Lajos & Husková, Marie & Kokoszka, Piotr, 2010. "Testing the stability of the functional autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 352-367, February.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:2:p:352-367

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    2. Philippe C. Besse, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687.
    3. Hansen, Bruce E., 1995. "Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1148-1171, October.
    4. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    5. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    6. Gabrys, Robertas & Kokoszka, Piotr, 2007. "Portmanteau Test of Independence for Functional Observations," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1338-1348, December.
    7. Peter Hall & Mohammad Hosseini-Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126.
    8. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    9. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 1999. "Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 96-119, January.
    10. P. M. Robinson, 1998. "Inference-Without-Smoothing in the Presence of Nonparametric Autocorrelation," Econometrica, Econometric Society, vol. 66(5), pages 1163-1182, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    2. Devin Didericksen & Piotr Kokoszka & Xi Zhang, 2012. "Empirical properties of forecasts with the functional autoregressive model," Computational Statistics, Springer, vol. 27(2), pages 285-298, June.
    3. Liu, Xialu & Xiao, Han & Chen, Rong, 2016. "Convolutional autoregressive models for functional time series," Journal of Econometrics, Elsevier, vol. 194(2), pages 263-282.
    4. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    5. A. Soltani & M. Hashemi, 2011. "Periodically correlated autoregressive Hilbertian processes," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 177-188, May.
    6. Horváth, Lajos & Reeder, Ron, 2012. "Detecting changes in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 310-334.
    7. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    8. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.

    More about this item


    62M10 Change-point Functional autoregressive process;

    JEL classification:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:2:p:352-367. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.