IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Strong convergence rate of estimators of change point and its application

Listed author(s):
  • Shi, Xiaoping
  • Wu, Yuehua
  • Miao, Baiqi
Registered author(s):

    Let {Xn,n[greater-or-equal, slanted]1} be an independent sequence with a mean shift. We consider the cumulative sum (CUSUM) estimator of a change point. It is shown that, when the rth moment of Xn is finite, for n[greater-or-equal, slanted]1 and r>1, strong convergence rate of the change point estimator is o(M(n)/n), for any M(n) satisfying that M(n)[short up arrow][infinity], which has improved the results in the literature. Furthermore, it is also shown that the preceding rate is still valid for some dependent or negative associate cases. We also propose an iterative algorithm to search for the location of a change point. A simulation study on a mean shift model with a stable distribution is provided, which demonstrates that the algorithm is efficient. In addition, a real data example is given for illustration.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 53 (2009)
    Issue (Month): 4 (February)
    Pages: 990-998

    in new window

    Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:990-998
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Lavielle, Marc, 1999. "Detection of multiple changes in a sequence of dependent variables," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 79-102, September.
    2. Matula, Przemyslaw, 1992. "A note on the almost sure convergence of sums of negatively dependent random variables," Statistics & Probability Letters, Elsevier, vol. 15(3), pages 209-213, October.
    3. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:990-998. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.