IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i3p510-541.html
   My bibliography  Save this article

The increment ratio statistic

Author

Listed:
  • Surgailis, Donatas
  • Teyssière, Gilles
  • Vaiciulis, Marijus

Abstract

We introduce a new statistic written as a sum of certain ratios of second-order increments of partial sums process of observations, which we call the increment ratio (IR) statistic. The IR statistic can be used for testing nonparametric hypotheses for d-integrated () behavior of time series Xt, including short memory (d=0), (stationary) long-memory and unit roots (d=1). If Sn behaves asymptotically as an (integrated) fractional Brownian motion with parameter , the IR statistic converges to a monotone function [Lambda](d) of as both the sample size N and the window parameter m increase so that N/m-->[infinity]. For Gaussian observations Xt, we obtain a rate of decay of the bias EIR-[Lambda](d) and a central limit theorem , in the region . Graphs of the functions [Lambda](d) and [sigma](d) are included. A simulation study shows that the IR test for short memory (d=0) against stationary long-memory alternatives has good size and power properties and is robust against changes in mean, slowly varying trends and nonstationarities. We apply this statistic to sequences of squares of returns on financial assets and obtain a nuanced picture of the presence of long-memory in asset price volatility.

Suggested Citation

  • Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:510-541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00015-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Jasiak, Joann, 2001. "Memory and infrequent breaks," Economics Letters, Elsevier, vol. 70(1), pages 29-41, January.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Csörgo, Sándor & Mielniczuk, Jan, 1995. "Distant long-range dependent sums and regression estimation," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 143-155, September.
    4. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    5. J. Bardet & G. Lang & E. Moulines & P. Soulier, 2000. "Wavelet Estimator of Long-Range Dependent Processes," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 85-99, January.
    6. Lavielle, Marc, 1999. "Detection of multiple changes in a sequence of dependent variables," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 79-102, September.
    7. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    8. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 475-495.
    9. Sibbertsen, Philipp, 2003. "Log-periodogram estimation of the memory parameter of a long-memory process under trend," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 261-268, February.
    10. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    11. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    12. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    13. Giraitis, Liudas & Leipus, Remigijus & Philippe, Anne, 2006. "A Test For Stationarity Versus Trends And Unit Roots For A Wide Class Of Dependent Errors," Econometric Theory, Cambridge University Press, vol. 22(06), pages 989-1029, December.
    14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    15. Leipus, Remigijus & Viano, Marie-Claude, 2003. "Long memory and stochastic trend," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 177-190, January.
    16. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon, Gawon, 2009. "Is high real interest rate persistence an intrinsic characteristic of industrialized economies?," Economic Modelling, Elsevier, vol. 26(2), pages 359-363, March.
    2. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
    3. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:510-541. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.