IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i4d10.1007_s00362-023-01471-8.html
   My bibliography  Save this article

Kendall’s tau-based inference for gradually changing dependence structures

Author

Listed:
  • Félix Camirand Lemyre

    (Université de Sherbrooke)

  • Jean-François Quessy

    (Université du Québec à Trois-Rivières)

Abstract

Suppose that a sequence of random pairs $$(X_1,Y_1)$$ ( X 1 , Y 1 ) , $$\ldots $$ … , $$(X_n,Y_n)$$ ( X n , Y n ) is subject to a gradual change in the sense that for $$K_1 \le K_2 \in \{ 1, \ldots , n \}$$ K 1 ≤ K 2 ∈ { 1 , … , n } , the joint distribution is F before $$K_1$$ K 1 , G after $$K_2$$ K 2 , and gradually moving from F to G between the two times of change $$K_1$$ K 1 and $$K_2$$ K 2 . This setup elegantly generalizes the abrupt-change model that is usually assumed in the change-point analysis. Under this configuration, asymptotically unbiased estimates of Kendall’s tau up to and after the change are proposed, as well as tests and estimators of change points related to these measures. The asymptotic behaviour of the introduced estimators and test statistics is rigorously investigated, in particular by demonstrating a general result on weighted indexed U-statistics computed under a heterogeneous pattern. A simulation study is conducted to examine the sampling properties of the proposed methods under different scenarios of change in the dependence structure of bivariate series. An illustration is given on a time series of monthly atmospheric carbon dioxide concentrations and global temperature for the period 1959–2015.

Suggested Citation

  • Félix Camirand Lemyre & Jean-François Quessy, 2024. "Kendall’s tau-based inference for gradually changing dependence structures," Statistical Papers, Springer, vol. 65(4), pages 2033-2075, June.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01471-8
    DOI: 10.1007/s00362-023-01471-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01471-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01471-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    2. Wied, Dominik & Dehling, Herold & van Kampen, Maarten & Vogel, Daniel, 2014. "A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 723-736.
    3. D. A. Hsu, 1977. "Tests for Variance Shift at an Unknown Time Point," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 279-284, November.
    4. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    5. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    6. Holmes, Mark & Kojadinovic, Ivan & Quessy, Jean-François, 2013. "Nonparametric tests for change-point detection à la Gombay and Horváth," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 16-32.
    7. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 1999. "Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 96-119, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    2. Jean-François Quessy, 2024. "Gradual change-point analysis based on Spearman matrices for multivariate time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(3), pages 423-446, June.
    3. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    4. Florian Stark & Sven Otto, 2020. "Testing and Dating Structural Changes in Copula-based Dependence Measures," Papers 2011.05036, arXiv.org.
    5. Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2013. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Discussion Papers ISBA 2013051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Junwei Hu & Lihong Wang, 2023. "A weighted U-statistic based change point test for multivariate time series," Statistical Papers, Springer, vol. 64(3), pages 753-778, June.
    7. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    8. Michael Messer, 2022. "Bivariate change point detection: Joint detection of changes in expectation and variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 886-916, June.
    9. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    10. Bucher, Axel & Kojadinovic, Ivan, 2013. "A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing," LIDAM Discussion Papers ISBA 2013029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Xuwen Zhu & Yana Melnykov, 2022. "On Finite Mixture Modeling of Change-point Processes," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 3-22, March.
    12. Liu, Bin & Zhou, Cheng & Zhang, Xinsheng, 2019. "A tail adaptive approach for change point detection," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 33-48.
    13. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    14. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    15. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    16. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    17. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
    18. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    19. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    20. Tazen Fowé & Roland Yonaba & Lawani Adjadi Mounirou & Etienne Ouédraogo & Boubacar Ibrahim & Dial Niang & Harouna Karambiri & Hamma Yacouba, 2023. "From meteorological to hydrological drought: a case study using standardized indices in the Nakanbe River Basin, Burkina Faso," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1941-1965, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01471-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.