IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Long memory in the volatility of the Australian All Ordinaries Index and the Share Price Index futures

  • Jonathan Dark


Registered author(s):

    This paper tests for long memory in the volatility of the All Ordinaries Index and its Share Price Index (SPI) futures. This has important implications for those agents concerned with the long term volatility in these markets. We use daily data and a short span of high frequency data to estimate the fractional differencing parameter, examine the fit of the implied autocorrelation function, and calculate the modified R/S and KPSS test statistics. All procedures support the existence of long memory in volatility in both markets except the KPSS test on the index using daily data. We argue that this is due to the low power of the KPSS test.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 5/04.

    in new window

    Length: 51 pages
    Date of creation: Mar 2004
    Date of revision:
    Handle: RePEc:msh:ebswps:2004-5
    Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
    Phone: +61 3 99052489
    Fax: +61 3 99055474
    Web page:

    More information through EDIRC

    Order Information: Web: Email:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
    2. Jones, Charles M. & Lamont, Owen & Lumsdaine, Robin L., 1998. "Macroeconomic news and bond market volatility," Journal of Financial Economics, Elsevier, vol. 47(3), pages 315-337, March.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Giraitis, L. & Kokoszka, P. & Leipus, R. & Teyssiere, G., 1999. "Semiparametric Estimation of the Intensity of Long Memory in Conditional Heteroskedasticity," G.R.E.Q.A.M. 99a24, Universite Aix-Marseille III.
    5. Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
    6. Ederington, Louis H & Lee, Jae Ha, 1993. " How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-91, September.
    7. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    8. Gilles Teyssière & Alan Kirman, 2001. "Microeconomic Models for Long-Memory in the Volatility of Financial Time Series," CeNDEF Workshop Papers, January 2001 5A.4, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    9. Granger, Clive W.J. & Hyung, Namwon, 1999. "Occasional Structural Breaks and Long Memory," University of California at San Diego, Economics Working Paper Series qt4d60t4jh, Department of Economics, UC San Diego.
    10. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    11. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
    12. I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, EconWPA, revised 26 Sep 1996.
    13. Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
    14. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
    15. Hyung, N. & Franses, Ph.H.B.F., 2001. "Structural breaks and long memory in US inflation rates: do they matter for forecasting?," Econometric Institute Research Papers EI 2001-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Lee, D. & Schmidt, P., 1993. "On the Power of the KPSS Test of Stationarity Against Fractionally-Integrated Alternatives," Papers 9111, Michigan State - Econometrics and Economic Theory.
    17. Breidt, F. Jay & Hsu, Nan-Jung, 2002. "A class of nearly long-memory time series models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 265-281.
    18. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    19. KIRMAN, Alan & TEYSSIÈRE, Gilles, 2002. "Bubbles and long-range dependence in asset prices volatilities," CORE Discussion Papers 2002060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Kim, Dongcheol & Kon, Stanley J., 1999. "Structural change and time dependence in models of stock returns," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 283-308, September.
    21. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    22. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    23. Jacobsen, Ben, 1996. "Long term dependence in stock returns," Journal of Empirical Finance, Elsevier, vol. 3(4), pages 393-417, December.
    24. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    25. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    26. Lee, Hyung S. & Amsler, Christine, 1997. "Consistency of the KPSS unit root test against fractionally integrated alternative," Economics Letters, Elsevier, vol. 55(2), pages 151-160, August.
    27. Fulvio Corsi & Gilles Zumbach & Ulrich A. Muller & Michel M. Dacorogna, 2001. "Consistent High-precision Volatility from High-frequency Data," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 183-204, 07.
    28. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    29. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    30. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    31. Torben G. Andersen & Tim Bollerslev, 1998. "Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," Journal of Finance, American Finance Association, vol. 53(1), pages 219-265, 02.
    32. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    33. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
    34. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2004-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.