IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1677.html
   My bibliography  Save this paper

Structural breaks and long memory in US inflation rates: do they matter for forecasting?

Author

Listed:
  • Hyung, N.
  • Franses, Ph.H.B.F.

Abstract

There is substantial evidence that several economic time series variables experience occasional structural breaks. At the same time, for some of these variables there is evidence of long memory. In particular, it seems that inflation rates have both features. One cause for this finding may be that the two features are difficult to distinguish using currently available econometric tools. Indeed, various recent studies show that neglecting occasional breaks may lead to a spurious finding of long-memory properties. In this paper we focus on this issue within the context of out-of-sample forecasting. First, we show that indeed data with breaks can be viewed as long-memory data. Next, we compare time series models with structural breaks, models with long-memory and linear autoregressive models for 23 monthly US inflation rates in terms of out-of-sample forecasting for various horizons. A key finding is that the linear models do not perform as well as the other two, and that the model with breaks and the model with long memory perform about equally well. We also examine their joint performance by combining the forecasts. A by-product of our empirical analysis is that we can relate the value of the long-memory parameter with the number of detected breaks, in which case we find a strong positive relationship.

Suggested Citation

  • Hyung, N. & Franses, Ph.H.B.F., 2001. "Structural breaks and long memory in US inflation rates: do they matter for forecasting?," Econometric Institute Research Papers EI 2001-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1677
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1677/feweco20010412164438.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002. "Inflation, forecast intervals and long memory regression models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
    2. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(03), pages 315-352, June.
    7. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    8. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    9. Nunes, Luis C. & Newbold, Paul & Chung-Ming Kuan, 1996. "Spurious number of breaks," Economics Letters, Elsevier, vol. 50(2), pages 175-178, February.
    10. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Caporale, Guglielmo & A. Gil-Alana, Luis, 2011. "Multi-Factor Gegenbauer Processes and European Inflation Rates," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 26, pages 386-409.
    2. Goliński, Adam & Zaffaroni, Paolo, 2016. "Long memory affine term structure models," Journal of Econometrics, Elsevier, vol. 191(1), pages 33-56.
    3. Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
    4. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    5. Ciner, Cetin, 2011. "Commodity prices and inflation: Testing in the frequency domain," Research in International Business and Finance, Elsevier, vol. 25(3), pages 229-237, September.
    6. Jonathan Dark, 2004. "Long memory in the volatility of the Australian All Ordinaries Index and the Share Price Index futures," Monash Econometrics and Business Statistics Working Papers 5/04, Monash University, Department of Econometrics and Business Statistics.
    7. Jonathan Dark, 2004. "Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures," Monash Econometrics and Business Statistics Working Papers 4/04, Monash University, Department of Econometrics and Business Statistics.
    8. Belkhouja, Mustapha & Mootamri, Imene, 2016. "Long memory and structural change in the G7 inflation dynamics," Economic Modelling, Elsevier, vol. 54(C), pages 450-462.
    9. Hwang, Eunju & Shin, Dong Wan, 2013. "A CUSUM test for a long memory heterogeneous autoregressive model," Economics Letters, Elsevier, vol. 121(3), pages 379-383.
    10. Richard T. Baille & Claudio Morana, 2009. "Investigating Inflation Dynamics and Structural Change with an Adaptive ARFIMA Approach," ICER Working Papers - Applied Mathematics Series 06-2009, ICER - International Centre for Economic Research.
    11. Hwang, Eunju & Shin, Dong Wan, 2015. "A CUSUMSQ test for structural breaks in error variance for a long memory heterogeneous autoregressive model," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 167-176.
    12. Baillie, Richard T. & Morana, Claudio, 2012. "Adaptive ARFIMA models with applications to inflation," Economic Modelling, Elsevier, vol. 29(6), pages 2451-2459.
    13. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    14. Narayan, Seema & Narayan, Paresh Kumar, 2013. "The inflation–output nexus: Empirical evidence from India, South Africa, and Brazil," Research in International Business and Finance, Elsevier, vol. 28(C), pages 19-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1677. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub). General contact details of provider: http://edirc.repec.org/data/feeurnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.