IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1677.html
   My bibliography  Save this paper

Structural breaks and long memory in US inflation rates: do they matter for forecasting?

Author

Listed:
  • Hyung, N.
  • Franses, Ph.H.B.F.

Abstract

There is substantial evidence that several economic time series variables experience occasional structural breaks. At the same time, for some of these variables there is evidence of long memory. In particular, it seems that inflation rates have both features. One cause for this finding may be that the two features are difficult to distinguish using currently available econometric tools. Indeed, various recent studies show that neglecting occasional breaks may lead to a spurious finding of long-memory properties. In this paper we focus on this issue within the context of out-of-sample forecasting. First, we show that indeed data with breaks can be viewed as long-memory data. Next, we compare time series models with structural breaks, models with long-memory and linear autoregressive models for 23 monthly US inflation rates in terms of out-of-sample forecasting for various horizons. A key finding is that the linear models do not perform as well as the other two, and that the model with breaks and the model with long memory perform about equally well. We also examine their joint performance by combining the forecasts. A by-product of our empirical analysis is that we can relate the value of the long-memory parameter with the number of detected breaks, in which case we find a strong positive relationship.

Suggested Citation

  • Hyung, N. & Franses, Ph.H.B.F., 2001. "Structural breaks and long memory in US inflation rates: do they matter for forecasting?," Econometric Institute Research Papers EI 2001-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1677
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1677/feweco20010412164438.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002. "Inflation, forecast intervals and long memory regression models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
    2. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    3. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    4. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    5. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    6. Nunes, Luis C. & Newbold, Paul & Chung-Ming Kuan, 1996. "Spurious number of breaks," Economics Letters, Elsevier, vol. 50(2), pages 175-178, February.
    7. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    8. Engle, Robert F & Smith, Aaron, 1998. "Stochastic Permanent Breaks," University of California at San Diego, Economics Working Paper Series qt99v0s0zx, Department of Economics, UC San Diego.
    9. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    10. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    11. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.
    2. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    3. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    4. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    5. Luis A. Gil‐Alana, 2008. "Fractional integration and structural breaks at unknown periods of time," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 163-185, January.
    6. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    7. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    8. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    9. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    10. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    11. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    12. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    13. Richard T. Baille & Claudio Morana, 2009. "Investigating Inflation Dynamics and Structural Change with an Adaptive ARFIMA Approach," ICER Working Papers - Applied Mathematics Series 06-2009, ICER - International Centre for Economic Research.
    14. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    15. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    16. Oomen, Roel C. A., 2004. "Modelling realized variance when returns are serially correlated [Modellierung realisierter Varianz bei autokorrelierten Erträgen]," Discussion Papers, Research Unit: Market Processes and Governance SP II 2004-11, WZB Berlin Social Science Center.
    17. Mohamed Boutahar & Mustapha Belkhouja, 2007. "Le Changement Structurel Dans Un Environnement Mémoire Longue," Working Papers halshs-00352610, HAL.
    18. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    19. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    20. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub The email address of this maintainer does not seem to be valid anymore. Please ask RePub to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.