IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/09022.html
   My bibliography  Save this paper

Breaks or long memory behaviour: An empirical investigation

Author

Abstract

Are structural breaks models true switching models or long memory processes? The answer to this question remain ambiguous. A lot of papers, in recent years, have dealt with this problem. For instance, Diebold and Inoue (2001) and Granger and Hyung (2004) show, under specific conditions, that switching models and long memory processes can be easily confused. In this paper, using several generating models like the mean-plus-noise model, the STOchastic Permanent BREAK model, the Markov switching model, the TAR model, the sign model and the Structural CHange model (SCH) and several estimation techiques like the GPH technique, the Exact Local Whittle (ELW) and the Wavelet methods, we show that, if the answer is quite simple in some cases, it can be mitigate in other cases. Using French and American inflation rates, we show that these series cannot be characterized by the same class of models. The main result of this study suggests that estimating the long memory parameter without taking account existence of breaks in the data sets may lead to misspecification and to overestimate the true parameter

Suggested Citation

  • Lanouar Charfeddine & Dominique Guegan, 2009. "Breaks or long memory behaviour: An empirical investigation," Documents de travail du Centre d'Economie de la Sorbonne 09022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:09022
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2009/09022.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carrion-i-Silvestre, Josep Lluís & Kim, Dukpa & Perron, Pierre, 2009. "Gls-Based Unit Root Tests With Multiple Structural Breaks Under Both The Null And The Alternative Hypotheses," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1754-1792, December.
    2. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Lee, Jin, 2005. "Estimating memory parameter in the US inflation rate," Economics Letters, Elsevier, vol. 87(2), pages 207-210, May.
    5. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    6. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    9. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    10. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    11. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    12. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    13. Doornik Jurgen A & Ooms Marius, 2004. "Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-25, May.
    14. Junsoo Lee & Mark C. Strazicich, 2003. "Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1082-1089, November.
    15. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    16. Charfeddine Lanouar & Guégan Dominique, 2011. "Which is the Best Model for the US Inflation Rate: A Structural Change Model or a Long Memory Process?," The IUP Journal of Applied Economics, IUP Publications, vol. 0(1), pages 5-25, January.
    17. Jensen Mark J., 1999. "An Approximate Wavelet MLE of Short- and Long-Memory Parameters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-17, January.
    18. Gourieroux, Christian & Jasiak, Joann, 2001. "Memory and infrequent breaks," Economics Letters, Elsevier, vol. 70(1), pages 29-41, January.
    19. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    20. Carrasco, Marine, 2002. "Misspecified Structural Change, Threshold, and Markov-switching models," Journal of Econometrics, Elsevier, vol. 109(2), pages 239-273, August.
    21. Bai, Jushan, 1998. "A Note On Spurious Break," Econometric Theory, Cambridge University Press, vol. 14(05), pages 663-669, October.
    22. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    23. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    24. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    2. José M. Belbute & Alfredo Marvão Pereira, 2016. "Updated Reference Forecasts for Global CO2 Emissions from Fossil-Fuel Consumption," Working Papers 170, Department of Economics, College of William and Mary.
    3. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    4. Rinke, Saskia & Busch, Marie & Leschinski, Christian, 2017. "Long Memory, Breaks, and Trends: On the Sources of Persistence in Inflation Rates," Hannover Economic Papers (HEP) dp-584, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    6. Charfeddine, Lanouar & Benlagha, Noureddine, 2016. "A time-varying copula approach for modelling dependency: New evidence from commodity and stock markets," Journal of Multinational Financial Management, Elsevier, vol. 37, pages 168-189.
    7. Charfeddine, Lanouar & Khediri, Karim Ben, 2016. "Time varying market efficiency of the GCC stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 487-504.
    8. Dominique Guégan, 2009. "A Meta-Distribution for Non-Stationary Samples," CREATES Research Papers 2009-24, Department of Economics and Business Economics, Aarhus University.
    9. Charfeddine, Lanouar, 2014. "True or spurious long memory in volatility: Further evidence on the energy futures markets," Energy Policy, Elsevier, vol. 71(C), pages 76-93.
    10. Carlos Barros & Luis Gil-Alana & Fernando Perez de Gracia, 2016. "Stationarity and Long Range Dependence of Carbon Dioxide Emissions: Evidence for Disaggregated Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 45-56, January.
    11. repec:eee:jebusi:v:92:y:2017:i:c:p:45-62 is not listed on IDEAS

    More about this item

    Keywords

    Structural breaks models; Spurious long memory behavior; inflation series;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:09022. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label). General contact details of provider: http://edirc.repec.org/data/cenp1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.