IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v10y1989i4p375-383.html
   My bibliography  Save this article

A Central Limit Theorem Of Fourier Transforms Of Strongly Dependent Stationary Processes

Author

Listed:
  • Yoshihiro Yajima

Abstract

. We consider a limiting distribution of the finite Fourier transforms of observations drawn from a strongly dependent stationary process. It is proved that the finite Fourier transforms at different frequencies are asymptotically independent and normally distributed. Our result can apply to a fractional autoregressive integrated moving‐average process and a fractional Gaussian noise, two examples of strongly dependent stationary processes.

Suggested Citation

  • Yoshihiro Yajima, 1989. "A Central Limit Theorem Of Fourier Transforms Of Strongly Dependent Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(4), pages 375-383, July.
  • Handle: RePEc:bla:jtsera:v:10:y:1989:i:4:p:375-383
    DOI: 10.1111/j.1467-9892.1989.tb00036.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.1989.tb00036.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.1989.tb00036.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    2. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    3. La Spada Gabriele & Lillo Fabrizio, 2014. "The effect of round-off error on long memory processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 445-482, September.
    4. Beran, Jan & Feng, Yuanhua & Ghosh, Sucharita & Sibbertsen, Philipp, 2002. "On robust local polynomial estimation with long-memory errors," International Journal of Forecasting, Elsevier, vol. 18(2), pages 227-241.
    5. Charfeddine, Lanouar & Khediri, Karim Ben, 2016. "Time varying market efficiency of the GCC stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 487-504.
    6. Kanchana Nadarajah & Gael M Martin & Donald S Poskitt, 2019. "Optimal Bias Correction of the Log-periodogram Estimator of the Fractional Parameter: A Jackknife Approach," Monash Econometrics and Business Statistics Working Papers 7/19, Monash University, Department of Econometrics and Business Statistics.
    7. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    8. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    9. Lanouar Charfeddine & Dominique Guegan, 2009. "Breaks or Long Memory Behaviour: An empirical Investigation," Post-Print halshs-00377485, HAL.
    10. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi‐Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    11. Hassler, Uwe & Rodrigues, Paulo M.M. & Rubia, Antonio, 2014. "Persistence in the banking industry: Fractional integration and breaks in memory," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 95-112.
    12. T. Subba Rao & Gyorgy Terdik, 2017. "A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 936-959, November.
    13. Ørregaard Nielsen, Morten, 2004. "Local empirical spectral measure of multivariate processes with long range dependence," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 145-166, January.
    14. Lanouar Charfeddine & Dominique Guegan, 2007. "Which is the best model for the US inflation rate: a structural changes model or a long memory process?," Post-Print halshs-00188309, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:10:y:1989:i:4:p:375-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.