IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0056.html
   My bibliography  Save this paper

Testing the Adequacy of Smooth Transition Autoregressive Models

Author

Listed:
  • Eitrheim, Øyvind
  • Teräsvirta, Timo

    (Dept. of Economic Statistics, Stockholm School of Economics)

Abstract

Smooth transition autoregressive models are a flixible family of nonlinear time series models that have also been used for modelling economic data. This paper contributes to the evaluation stage of a proposed specification, estimation, and evaluation cycle of this models by introducing a Lagrange multiplier (LM) test for the hypothesis of no error autocorrelation and LM type tests for the hypothesis of remaining nonlinearity and that of parameter constancy. Small sample properies of the F versions of the tests and some alternative tests are investigated by simulation. The results indicate that the proposed tests can be applied in small samples already.

Suggested Citation

  • Eitrheim, Øyvind & Teräsvirta, Timo, 1995. "Testing the Adequacy of Smooth Transition Autoregressive Models," SSE/EFI Working Paper Series in Economics and Finance 56, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0056
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    2. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    3. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    4. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Aranda & Patricio Jaramillo, 2008. "Nonlinear Dynamic in the Chilean Stock Market: Evidence from Returns and Trading Volume," Working Papers Central Bank of Chile 463, Central Bank of Chile.
    2. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    3. Milas Costas & Legrenzi Gabriella, 2006. "Non-linear Real Exchange Rate Effects in the UK Labour Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-34, March.
    4. Hasanov, Mübariz & Araç, Aysen & Telatar, Funda, 2010. "Nonlinearity and structural stability in the Phillips curve: Evidence from Turkey," Economic Modelling, Elsevier, vol. 27(5), pages 1103-1115, September.
    5. Lopes, Artur Silva & Zsurkis, Gabriel Florin, 2017. "Are linear models really unuseful to describe business cycle data?," Economics Discussion Papers 2017-5, Kiel Institute for the World Economy (IfW Kiel).
    6. Balagtas, Joseph Valdes & Holt, Matthew T., 2006. "Unit Roots, TV-STARs, and the Commodity Terms of Trade: A Further Assessment of the Prebisch-Singer Hypothesis," 2006 Annual meeting, July 23-26, Long Beach, CA 21405, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    8. Khurshid Kiani, 2005. "Detecting Business Cycle Asymmetries Using Artificial Neural Networks and Time Series Models," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 65-89, August.
    9. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    10. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    11. Domenico J. Marchetti & Giuseppe Parigi, 1998. "Energy Consumption, Survey Data and the Prediction of Industrial Production in Italy," Temi di discussione (Economic working papers) 342, Bank of Italy, Economic Research and International Relations Area.
    12. González Andrés & Teräsvirta Timo, 2008. "Modelling Autoregressive Processes with a Shifting Mean," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-28, March.
    13. Tolga Omay & Furkan Emirmahmutoğlu, 2017. "The Comparison of Power and Optimization Algorithms on Unit Root Testing with Smooth Transition," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 623-651, April.
    14. Q. Farooq Akram & Øyvind Eitrheim & Lucio Sarno, 2005. "Non-linear dynamics in output, real exchange rates and real money balances: Norway, 1830-2003," Working Paper 2005/2, Norges Bank.
    15. Heather M. Anderson, 2002. "Choosing Lag Lengths in Nonlinear Dynamic Models," Monash Econometrics and Business Statistics Working Papers 21/02, Monash University, Department of Econometrics and Business Statistics.
    16. Mills, Terence C., 1995. "Business cycle asymmetries and non-linearities in U.K. macroeconomic time series," Ricerche Economiche, Elsevier, vol. 49(2), pages 97-124, June.
    17. Carlo Altavilla & Paul De Grauwe, 2010. "Non-linearities in the relation between the exchange rate and its fundamentals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-21.
    18. Mohamed Boutahar & Imene Mootamri & Anne Peguin-Feissolle, 2007. "An exponential FISTAR model applied to the US real effective exchange rate," Working Papers halshs-00353836, HAL.
    19. Ubilava, David & holt, Matt, 2013. "El Ni~no southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 1-25.
    20. Heather M. Anderson & Farshid Vahid, 2005. "Nonlinear Correlograms and Partial Autocorrelograms," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 957-982, December.

    More about this item

    Keywords

    Autocorrelation; Lagrange Multiplier test; model evaluation; model misspecification; nonlinear time series; time series modelling;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0056. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.