IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1577-d1653129.html
   My bibliography  Save this article

Bitcoin Price Regime Shifts: A Bayesian MCMC and Hidden Markov Model Analysis of Macroeconomic Influence

Author

Listed:
  • Vaiva Pakštaitė

    (Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Akademijos Str. 4, LT-08412 Vilnius, Lithuania)

  • Ernestas Filatovas

    (Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Akademijos Str. 4, LT-08412 Vilnius, Lithuania)

  • Mindaugas Juodis

    (Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Akademijos Str. 4, LT-08412 Vilnius, Lithuania)

  • Remigijus Paulavičius

    (Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Akademijos Str. 4, LT-08412 Vilnius, Lithuania)

Abstract

Bitcoin’s role in global finance has rapidly expanded with increasing institutional participation, prompting new questions about its linkage to macroeconomic variables. This study thoughtfully integrates a Bayesian Markov Chain Monte Carlo (MCMC) covariate selection process within homogeneous and non-homogeneous Hidden Markov Models (HMMs) to analyze 16 macroeconomic and Bitcoin-specific factors from 2016 to 2024. The proposed method integrates likelihood penalties to refine variable selection and employs a rolling-window bootstrap procedure for 1-, 5-, and 30-step-ahead forecasting. Results indicate a fundamental shift: while early Bitcoin pricing was primarily driven by technical and supply-side factors (e.g., halving cycles, trading volume), later periods exhibit stronger ties to macroeconomic indicators such as exchange rates and major stock indices. Heightened volatility aligns with significant events—including regulatory changes and institutional announcements—underscoring Bitcoin’s evolving market structure. These findings demonstrate that integrating Bayesian MCMC within a regime-switching model provides robust insights into Bitcoin’s deepening connection with traditional financial forces.

Suggested Citation

  • Vaiva Pakštaitė & Ernestas Filatovas & Mindaugas Juodis & Remigijus Paulavičius, 2025. "Bitcoin Price Regime Shifts: A Bayesian MCMC and Hidden Markov Model Analysis of Macroeconomic Influence," Mathematics, MDPI, vol. 13(10), pages 1-25, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1577-:d:1653129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. King, Juan C. & Dale, Roberto & Amigó, José M., 2024. "Blockchain metrics and indicators in cryptocurrency trading," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    3. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    4. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    5. Marco Marcozzi & Ernestas Filatovas & Linas Stripinis & Remigijus Paulavičius, 2024. "Data-Driven Consensus Protocol Classification Using Machine Learning," Mathematics, MDPI, vol. 12(2), pages 1-18, January.
    6. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    7. Misha Perepelitsa, 2022. "Elementary Bitcoin economics: from production and transaction demand to values," Papers 2211.07035, arXiv.org.
    8. Yuanyuan (Catherine) Chen, 2021. "Empirical analysis of bitcoin price," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(4), pages 692-715, October.
    9. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    10. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    11. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    12. Ahmed Ibrahim & Rasha Kashef & Menglu Li & Esteban Valencia & Eric Huang, 2020. "Bitcoin Network Mechanics: Forecasting the BTC Closing Price Using Vector Auto-Regression Models Based on Endogenous and Exogenous Feature Variables," JRFM, MDPI, vol. 13(9), pages 1-21, August.
    13. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2023. "Cryptocurrencies Are Becoming Part of the World Global Financial Market," Papers 2303.00495, arXiv.org.
    14. Jiqian Wang & Feng Ma & Elie Bouri & Yangli Guo, 2023. "Which factors drive Bitcoin volatility: Macroeconomic, technical, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 970-988, July.
    15. Juan C. King & Roberto Dale & Jos'e M. Amig'o, 2024. "Blockchain Metrics and Indicators in Cryptocurrency Trading," Papers 2403.00770, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
    2. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    3. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Cryptocurrency returns under empirical asset pricing," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    5. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    6. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    7. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    8. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    9. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    10. Toan Luu Duc Huynh & Rizwan Ahmed & Muhammad Ali Nasir & Muhammad Shahbaz & Ngoc Quang Anh Huynh, 2024. "The nexus between black and digital gold: evidence from US markets," Annals of Operations Research, Springer, vol. 334(1), pages 521-546, March.
    11. Tzeng, Kae-Yih & Su, Yi-Kai, 2024. "Can U.S. macroeconomic indicators forecast cryptocurrency volatility?," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    12. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    13. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    14. Harasheh, Murad & Bouteska, Ahmed, 2025. "Volatility estimation through stochastic processes: Evidence from cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 75(PB).
    15. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    16. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    17. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    18. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    19. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    20. Mabsur Fatin Bin Hossain & Lubna Zahan Lamia & Md Mahmudur Rahman & Md Mosaddek Khan, 2024. "FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics," Papers 2411.12748, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1577-:d:1653129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.