IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0300.html
   My bibliography  Save this article

BVAR mapping

Author

Listed:
  • Demeshev, Boris

    (National Research University Higher School of Economics, Moscow, Russian Federation;)

  • Malakhovskaya, Oxana

    (National Research University Higher School of Economics, Moscow, Russian Federation;)

Abstract

This paper reviews estimation and forecasting with Bayesian vector autoregressions (BVARs). In the first part of the paper, we propose a clear classification of the most frequently used prior distributions and we show how the parameters of posterior distributions can be computed for the priors we consider in the paper. A separate section describes the endogenous choice of prior hyperparameters that is currently a key step to estimate a BVAR in a data-rich environment. The second part of this paper is devoted to forecasting with BVARs. We review both point and density forecasting.

Suggested Citation

  • Demeshev, Boris & Malakhovskaya, Oxana, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
  • Handle: RePEc:ris:apltrx:0300
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2016_43_118-141.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    2. Andrew Blake & Haroon Mumtaz, 2015. "Applied Bayesian Econometrics for central bankers," Handbooks, Centre for Central Banking Studies, Bank of England, number 36, April.
    3. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    5. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.
    6. Slutskin, Lev, 2010. "Bayesian analysis in the case of an estimated parameter following a stochastic process," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 20(4), pages 119-131.
    7. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139, Decembrie.
    8. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    9. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    10. Малаховская Оксана Анатольевна & Пекарский Сергей Эдмундович, 2012. "Исследования Причинно-Следственных Взаимосвязей В Макроэкономике: Нобелевская Премия По Экономике 2011 Г," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 16(1), pages 3-30.
    11. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    12. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    13. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    14. Favero, Carlo A., 2001. "Applied Macroeconometrics," OUP Catalogue, Oxford University Press, number 9780198296850, Decembrie.
    15. Aivazian, Sergei, 2008. "Bayesian Methods in Econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 9(1), pages 93-130.
    16. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    17. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    18. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    19. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Константин Орлов // Konstantin Orlov, 2021. "Построение большой байесовской авторегрессионной модели для Казахстана // Building a Large Bayesian Vector Autoregression Model for Kazakhstan," Working Papers #2021-1, National Bank of Kazakhstan.
    2. M. Tiunova G. & М. Тиунова Г., 2018. "Влияние Внешних Шоков На Российскую Экономику // The Impact Of External Shocks On The Russian Economy," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(4), pages 146-170.
    3. Shevelev A.A., 2017. "Bayesian approach to evaluate the impact of external shocks on Russian macroeconomics indicators," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 17(1), pages 26-40.
    4. M. Tiunova G. & М. Тиунова Г., 2018. "Моделирование Эффекта Переноса Валютного Курса На Цены В России // Modeling The Transfer Effect Of Exchange Rate On Prices In Russia," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(3), pages 136-154.
    5. Anton I. Votinov & Ivan P. Stankevich, 2017. "VAR Approach to Efficiency Evaluation of Fiscal Economy Encouragement Measures," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 64-74, December.
    6. И Управления Мир Экономики, 2017. "Байесовский подход к анализу влияния монетарной политики на макроэкономические показатели России. Bayesian approach to the analysis of monetary policy impact on Russian macroeconomics indicators," Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, Socionet;Новосибирский государственный университет, vol. 17(4), pages 53-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    2. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    3. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    4. Shevelev A.A., 2017. "Bayesian approach to evaluate the impact of external shocks on Russian macroeconomics indicators," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 17(1), pages 26-40.
    5. Pestova, Anna & Mamonov, Mikhail, 2019. "Should we care? : The economic effects of financial sanctions on the Russian economy," BOFIT Discussion Papers 13/2019, Bank of Finland, Institute for Economies in Transition.
    6. repec:zbw:bofitp:2019_013 is not listed on IDEAS
    7. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    8. Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
    9. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "Bayesian local projections," Working Papers hal-03373574, HAL.
    10. Hanck, Christoph & Prüser, Jan, 2016. "House prices and interest rates: Bayesian evidence from Germany," Ruhr Economic Papers 620, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Демешев Борис Борисович & Малаховская Оксана Анатольевна, 2016. "Макроэкономическое Прогнозирование С Помощью Bvar Литтермана," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(4), pages 691-710.
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2021. "No‐arbitrage priors, drifting volatilities, and the term structure of interest rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 495-516, August.
    13. Pestova, Anna & Mamonov, Mikhail, 2019. "Should we care? The economic effects of financial sanctions on the Russian economy," BOFIT Discussion Papers 13/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
    14. Tim Oliver Berg, 2016. "Multivariate Forecasting with BVARs and DSGE Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 718-740, December.
    15. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    16. И Управления Мир Экономики, 2017. "Байесовский подход к анализу влияния монетарной политики на макроэкономические показатели России. Bayesian approach to the analysis of monetary policy impact on Russian macroeconomics indicators," Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, Socionet;Новосибирский государственный университет, vol. 17(4), pages 53-70.
    17. Haroon Mumtaz & Nitin Kumar, 2012. "An application of data-rich environment for policy analysis of the Indian economy," Joint Research Papers 2, Centre for Central Banking Studies, Bank of England.
    18. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    19. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    20. Kaabia, Olfa & Abid, Ilyes & Guesmi, Khaled, 2013. "Does Bayesian shrinkage help to better reflect what happened during the subprime crisis?," Economic Modelling, Elsevier, vol. 31(C), pages 423-432.
    21. Fady Barsoum, 2013. "The Effects of Monetary Policy Shocks on a Panel of Stock Market Volatilities: A Factor-Augmented Bayesian VAR Approach," Working Paper Series of the Department of Economics, University of Konstanz 2013-15, Department of Economics, University of Konstanz.

    More about this item

    Keywords

    BVAR; prior distributions; point forecasting; density forecasting;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.