IDEAS home Printed from https://ideas.repec.org/p/red/append/14-103.html
   My bibliography  Save this paper

Online Appendix to "Financial conditions and density forecasts for US output and inflation"

Author

Listed:
  • Piergiorgio Alessandri

    (Banca d'Italia)

  • Haroon Mumtaz

    (Queen Mary University of London)

Abstract

Online appendix for the Review of Economic Dynamics article

Suggested Citation

  • Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Online Appendix to "Financial conditions and density forecasts for US output and inflation"," Online Appendices 14-103, Review of Economic Dynamics.
  • Handle: RePEc:red:append:14-103
    Note: The original article was published in the Review of Economic Dynamics
    as

    Download full text from publisher

    File URL: https://www.economicdynamics.org/appendix/14/14-103/14-103.pdf
    Download Restriction: None
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Javier Bianchi, 2011. "Overborrowing and Systemic Externalities in the Business Cycle," American Economic Review, American Economic Association, vol. 101(7), pages 3400-3426, December.
    2. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    3. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    4. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    5. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    6. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    7. Deaton, Angus, 1991. "Saving and Liquidity Constraints," Econometrica, Econometric Society, vol. 59(5), pages 1221-1248, September.
    8. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.
    9. Kim, Sunghyun Henry & Kollmann, Robert & Kim, Jinill, 2010. "Solving the incomplete market model with aggregate uncertainty using a perturbation method," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 50-58, January.
    10. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    11. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    12. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    13. McCallum, John, 1991. "Credit Rationing and the Monetary Transmission Mechanism," American Economic Review, American Economic Association, vol. 81(4), pages 946-951, September.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    15. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    16. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    17. Hubrich, Kirstin & Tetlow, Robert J., 2015. "Financial stress and economic dynamics: The transmission of crises," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 100-115.
    18. Urban Jermann & Vincenzo Quadrini, 2012. "Erratum: Macroeconomic Effects of Financial Shocks," American Economic Review, American Economic Association, vol. 102(2), pages 1186-1186, April.
    19. Zheng Liu & Pengfei Wang & Tao Zha, 2013. "Land‐Price Dynamics and Macroeconomic Fluctuations," Econometrica, Econometric Society, vol. 81(3), pages 1147-1184, May.
    20. Amisano, Gianni & Fagan, Gabriel, 2013. "Money growth and inflation: A regime switching approach," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 118-145.
    21. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    22. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    23. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    24. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    25. Den Haan, Wouter J. & De Wind, Joris, 2012. "Nonlinear and stable perturbation-based approximations," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1477-1497.
    26. Marcella Lucchetta & Gianni De Nicolo, 2012. "Systemic Real and Financial Risks; Measurement, Forecasting, and Stress Testing," IMF Working Papers 2012/058, International Monetary Fund.
    27. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    28. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    29. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    30. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    31. Urban Jermann & Vincenzo Quadrini, 2012. "Macroeconomic Effects of Financial Shocks," American Economic Review, American Economic Association, vol. 102(1), pages 238-271, February.
    32. Scott Brave & R. Andrew Butters, 2012. "Diagnosing the Financial System: Financial Conditions and Financial Stress," International Journal of Central Banking, International Journal of Central Banking, vol. 8(2), pages 191-239, June.
    33. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    34. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    35. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    36. Sydney Ludvigson, 1999. "Consumption And Credit: A Model Of Time-Varying Liquidity Constraints," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 434-447, August.
    37. Nathan S. Balke, 2000. "Credit and Economic Activity: Credit Regimes and Nonlinear Propagation of Shocks," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 344-349, May.
    38. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, September.
    39. Li, Shuyun May & Dressler, Scott, 2011. "Business cycle asymmetry via occasionally binding international borrowing constraints," Journal of Macroeconomics, Elsevier, vol. 33(1), pages 33-41, March.
    40. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    2. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
    3. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    6. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    7. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    8. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    9. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    10. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra.
    11. Davide Pettenuzzo & Allan Timmermann, 2017. "Forecasting Macroeconomic Variables Under Model Instability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
    12. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    13. McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
    14. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    16. Boris Blagov & Michael Funke, 2016. "The Credibility of Hong Kong's Currency Board System: Looking Through the Prism of MS-VAR Models with Time-Varying Transition Probabilities," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(6), pages 895-914, December.
    17. Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
    18. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    19. Chiu, Ching-Wai (Jeremy) & Hacioglu Hoke, Sinem, 2016. "Macroeconomic tail events with non-linear Bayesian VARs," Bank of England working papers 611, Bank of England.
    20. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G01 - Financial Economics - - General - - - Financial Crises

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:append:14-103. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.