IDEAS home Printed from https://ideas.repec.org/p/qmw/qmwecw/wp715.html
   My bibliography  Save this paper

Financial Conditions and Density Forecasts for US Output and Inflation

Author

Listed:
  • Piergiorgio Alessandri

    () (Bank of Italy)

  • Haroon Mumtaz

    () (Queen Mary University of London)

Abstract

When do financial markets help in predicting economic activity? With incomplete markets, the link between financial and real economy is state-dependent and financial indicators may turn out to be useful particularly in forecasting "tail" macroeconomic events. We examine this conjecture by studying Bayesian predictive distributions for output growth and inflation in the US between 1983 and 2012, comparing linear and nonlinear VAR models. We find that financial indicators significantly improve the accuracy of the distributions. Regime-switching models perform better than linear models thanks to their ability to capture changes in the transmission mechanism of financial shocks between good and bad times. Such models could have sent a credible advance warning ahead of the Great Recession. Furthermore, the discrepancies between models are themselves predictable, which allows the forecaster to formulate reasonable real-time guesses on which model is likely to be more accurate in the next future.

Suggested Citation

  • Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:wp715
    as

    Download full text from publisher

    File URL: http://www.econ.qmul.ac.uk/media/econ/research/workingpapers/2014/items/wp715.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Javier Bianchi, 2011. "Overborrowing and Systemic Externalities in the Business Cycle," American Economic Review, American Economic Association, vol. 101(7), pages 3400-3426, December.
    2. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    3. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, pages 99-123.
    4. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, pages 1545-1578.
    6. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    7. Urban Jermann & Vincenzo Quadrini, 2012. "Macroeconomic Effects of Financial Shocks," American Economic Review, American Economic Association, pages 238-271.
    8. John Moore & Nobuhiro Kiyotaki, 2008. "Liquidity, Business Cycles, and Monetary Policy," 2008 Meeting Papers 35, Society for Economic Dynamics.
    9. Clements, M.P. & Smith J., 1998. "Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment," The Warwick Economics Research Paper Series (TWERPS) 509, University of Warwick, Department of Economics.
    10. Scott Brave & R. Andrew Butters, 2012. "Diagnosing the Financial System: Financial Conditions and Financial Stress," International Journal of Central Banking, International Journal of Central Banking, vol. 8(2), pages 191-239, June.
    11. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    12. Deaton, Angus, 1991. "Saving and Liquidity Constraints," Econometrica, Econometric Society, vol. 59(5), pages 1221-1248, September.
    13. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    14. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    15. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, pages 327-341.
    16. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    17. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, pages 1893-1925.
    18. Kim, Sunghyun Henry & Kollmann, Robert & Kim, Jinill, 2010. "Solving the incomplete market model with aggregate uncertainty using a perturbation method," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 50-58, January.
    19. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    20. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    21. Gilchrist, Simon & Yankov, Vladimir & Zakrajsek, Egon, 2009. "Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 471-493, May.
    22. McCallum, John, 1991. "Credit Rationing and the Monetary Transmission Mechanism," American Economic Review, American Economic Association, vol. 81(4), pages 946-951, September.
    23. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    24. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    25. Gertler, Mark & Kiyotaki, Nobuhiro, 2010. "Financial Intermediation and Credit Policy in Business Cycle Analysis," Handbook of Monetary Economics,in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 11, pages 547-599 Elsevier.
    26. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    27. Nolan, Charles & Thoenissen, Christoph, 2009. "Financial shocks and the US business cycle," Journal of Monetary Economics, Elsevier, pages 596-604.
    28. Sydney Ludvigson, 1999. "Consumption And Credit: A Model Of Time-Varying Liquidity Constraints," The Review of Economics and Statistics, MIT Press, pages 434-447.
    29. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    30. Marcella Lucchetta & Gianni De Nicolo, 2012. "Systemic Real and Financial Risks; Measurement, Forecasting, and Stress Testing," IMF Working Papers 12/58, International Monetary Fund.
    31. Nathan S. Balke, 2000. "Credit and Economic Activity: Credit Regimes and Nonlinear Propagation of Shocks," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 344-349, May.
    32. Zheng Liu & Pengfei Wang & Tao Zha, 2013. "Land‐Price Dynamics and Macroeconomic Fluctuations," Econometrica, Econometric Society, vol. 81(3), pages 1147-1184, May.
    33. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, pages 177-190.
    34. Hubrich, Kirstin & Tetlow, Robert J., 2015. "Financial stress and economic dynamics: The transmission of crises," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 100-115.
    35. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    36. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    37. Urban Jermann & Vincenzo Quadrini, 2012. "Erratum: Macroeconomic Effects of Financial Shocks," American Economic Review, American Economic Association, vol. 102(2), pages 1186-1186, April.
    38. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    39. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, September.
    40. Li, Shuyun May & Dressler, Scott, 2011. "Business cycle asymmetry via occasionally binding international borrowing constraints," Journal of Macroeconomics, Elsevier, vol. 33(1), pages 33-41, March.
    41. Gertler, Mark & Karadi, Peter, 2011. "A model of unconventional monetary policy," Journal of Monetary Economics, Elsevier, vol. 58(1), pages 17-34, January.
    42. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    43. Den Haan, Wouter J. & De Wind, Joris, 2012. "Nonlinear and stable perturbation-based approximations," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1477-1497.
    44. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    45. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mendonça, Diogo de Prince & Marçal, Emerson Fernandes & Brito, Márcio Holland de, 2016. "Is fiscal policy effective in Brazil? An empirical analysis," Textos para discussão 433, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    2. Thibaut Duprey & Benjamin Klaus, 2017. "How to Predict Financial Stress? An Assessment of Markov Switching Models," Staff Working Papers 17-32, Bank of Canada.
    3. Duprey, Thibaut & Klaus, Benjamin & Peltonen, Tuomas, 2017. "Dating systemic financial stress episodes in the EU countries," Journal of Financial Stability, Elsevier, pages 30-56.
    4. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, pages 391-405.
    5. Simone Auer, 2017. "A Financial Conditions Index for the CEE economies," Temi di discussione (Economic working papers) 1145, Bank of Italy, Economic Research and International Relations Area.
    6. Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
    7. Fawcett, Nicholas & Koerber, Lena & Masolo, Riccardo & Waldron, Matthew, 2015. "Evaluating UK point and density forecasts from an estimated DSGE model: the role of off-model information over the financial crisis," Bank of England working papers 538, Bank of England.
    8. Chiu, Ching-Wai (Jeremy) & Hacioglu Hoke, Sinem, 2016. "Macroeconomic tail events with non-linear Bayesian VARs," Bank of England working papers 611, Bank of England.
    9. Vugar Ahmadov & Shaig Adigozalov & Salman Huseynov & Fuad Mammadov & Vugar Rahimov, 2016. "Forecasting inflation in post-oil boom years: A case for non-linear models?," Working Papers 1601, Central Bank of Azerbaijan Republic.
    10. Boris B. Demeshev & Oxana A. Malakhovskaya, 2015. "Forecasting Russian Macroeconomic Indicators with BVAR," HSE Working papers WP BRP 105/EC/2015, National Research University Higher School of Economics.
    11. Mehmet Balcilar & Rangan Gupta & Renee van Eyden & Kirsten Thompson, 2015. "Comparing the Forecasting Ability of Financial Conditions Indices: The Case of South Africa," Working Papers 15-06, Eastern Mediterranean University, Department of Economics.

    More about this item

    Keywords

    Financial frictions; Predictive densities; Great Recession; Threshold VAR;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp715. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Owen). General contact details of provider: http://edirc.repec.org/data/deqmwuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.