IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/13396.html
   My bibliography  Save this paper

The Transmission of Monetary Policy Shocks

Author

Listed:
  • Miranda-Agrippino, Silvia
  • Ricco, Giovanni

Abstract

Commonly used instruments for the identification of monetary policy disturbances are likely to combine the true policy shock with information about the state of the economy due to the information disclosed through the policy action. We show that this signalling effect of monetary policy can give rise to the empirical puzzles reported in the literature, and propose a new high-frequency instrument for monetary policy shocks that accounts for informational rigidities. We find that a monetary tightening is unequivocally contractionary, with deterioration of domestic demand, labour and credit market conditions, as well as of asset prices and agents' expectations.

Suggested Citation

  • Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "The Transmission of Monetary Policy Shocks," CEPR Discussion Papers 13396, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:13396
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=13396
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    2. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    3. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    4. Nimark, Kristoffer, 2008. "Dynamic pricing and imperfect common knowledge," Journal of Monetary Economics, Elsevier, vol. 55(2), pages 365-382, March.
    5. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    6. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    7. Hubert, Paul & Maule, Becky, 2016. "Policy and macro signals as inputs to inflation expectation formation," Bank of England working papers 581, Bank of England.
    8. Guillaume Chevillon, 2007. "Direct Multi-Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    9. Reis, Ricardo, 2006. "Inattentive consumers," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1761-1800, November.
    10. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    11. Olivier J. Blanchard & Jean-Paul L'Huillier & Guido Lorenzoni, 2013. "News, Noise, and Fluctuations: An Empirical Exploration," American Economic Review, American Economic Association, vol. 103(7), pages 3045-3070, December.
    12. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1295-1328.
    13. Bartosz Mackowiak & Mirko Wiederholt, 2009. "Optimal Sticky Prices under Rational Inattention," American Economic Review, American Economic Association, vol. 99(3), pages 769-803, June.
    14. Boivin, Jean & Kiley, Michael T. & Mishkin, Frederic S., 2010. "How Has the Monetary Transmission Mechanism Evolved Over Time?," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 8, pages 369-422, Elsevier.
    15. Kuttner, Kenneth N., 2001. "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 523-544, June.
    16. Alan S. Blinder & Michael Ehrmann & Marcel Fratzscher & Jakob De Haan & David-Jan Jansen, 2008. "Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 910-945, December.
    17. Bernanke, Ben S & Blinder, Alan S, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, American Economic Association, vol. 82(4), pages 901-921, September.
    18. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    19. Silvia Miranda-Agrippino, 2015. "Unsurprising Shocks: Information, Premia, and the Monetary Transmission," Discussion Papers 1613, Centre for Macroeconomics (CFM), revised Apr 2016.
    20. Aoki, Kosuke, 2003. "On the optimal monetary policy response to noisy indicators," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 501-523, April.
    21. repec:eee:macchp:v2-71 is not listed on IDEAS
    22. repec:wly:japmet:v:25:y:2010:i:1:p:71-92 is not listed on IDEAS
    23. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    24. Jonas Dovern & Ulrich Fritsche & Jiri Slacalek, 2012. "Disagreement Among Forecasters in G7 Countries," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1081-1096, November.
    25. Hellwig, Martin F., 1980. "On the aggregation of information in competitive markets," Journal of Economic Theory, Elsevier, vol. 22(3), pages 477-498, June.
    26. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    27. Simon Gilchrist & David López-Salido & Egon Zakrajšek, 2015. "Monetary Policy and Real Borrowing Costs at the Zero Lower Bound," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 77-109, January.
    28. Rudebusch, Glenn D, 1998. "Do Measures of Monetary Policy in a VAR Make Sense? A Reply," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 943-948, November.
    29. James Cloyne & Patrick Hürtgen, 2016. "The Macroeconomic Effects of Monetary Policy: A New Measure for the United Kingdom," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(4), pages 75-102, October.
    30. Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.
    31. repec:wly:quante:v:10:y:2019:i:1:p:145-184 is not listed on IDEAS
    32. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    33. Dario Caldara & Edward Herbst, 2019. "Monetary Policy, Real Activity, and Credit Spreads: Evidence from Bayesian Proxy SVARs," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(1), pages 157-192, January.
    34. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    35. Orphanides, Athanasios, 2003. "Monetary policy evaluation with noisy information," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 605-631, April.
    36. Ricco, Giovanni, 2015. "A new identification of fiscal shocks based on the information flow," Working Paper Series 1813, European Central Bank.
    37. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    38. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    39. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    40. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    41. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, Oxford University Press, vol. 118(1), pages 269-298.
    42. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    43. Mikkel Plagborg‐Møller, 2019. "Bayesian inference on structural impulse response functions," Quantitative Economics, Econometric Society, vol. 10(1), pages 145-184, January.
    44. Rudebusch, Glenn D, 1998. "Do Measures of Monetary Policy in a VAR Make Sense?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 907-931, November.
    45. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    46. Ulrich K. Müller, 2013. "Risk of Bayesian Inference in Misspecified Models, and the Sandwich Covariance Matrix," Econometrica, Econometric Society, vol. 81(5), pages 1805-1849, September.
    47. Lutz Kilian & Yun Jung Kim, 2011. "How Reliable Are Local Projection Estimators of Impulse Responses?," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1460-1466, November.
    48. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    49. Admati, Anat R, 1985. "A Noisy Rational Expectations Equilibrium for Multi-asset Securities Markets," Econometrica, Econometric Society, vol. 53(3), pages 629-657, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Snezana Eminidou & Marios Zachariadis, 2019. "Firms’ Expectations and Monetary Policy Shocks in the Eurozone," University of Cyprus Working Papers in Economics 02-2019, University of Cyprus Department of Economics.
    2. Luca Dedola & Georgios Georgiadis & Johannes Gräb & Arnaud Mehl, 2018. "Does a Big Bazooka Matter? Central Bank Balance-Sheet Policies and Exchange Rates," GRU Working Paper Series GRU_2018_024, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    3. repec:oup:jeurec:v:15:y:2017:i:4:p:721-745. is not listed on IDEAS
    4. Luca Brugnolini, 2018. "About Local Projection Impulse Response Function Reliability," CEIS Research Paper 440, Tor Vergata University, CEIS, revised 09 Jun 2018.
    5. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    6. Silvia Miranda-Agrippino, 2015. "Unsurprising Shocks: Information, Premia, and the Monetary Transmission," Discussion Papers 1613, Centre for Macroeconomics (CFM), revised Apr 2016.
    7. Philippe Andrade & Filippo Ferroni, 2016. "Delphic and Odyssean monetary policy shocks: Evidence from the euro-area," School of Economics Discussion Papers 1216, School of Economics, University of Surrey.
    8. Paul Hubert & Becky Maule, 2016. "Policy and Macro Signals as Inputs to Inflation Expectation Formation," Documents de Travail de l'OFCE 2016-02, Observatoire Francais des Conjonctures Economiques (OFCE).
    9. Martin Feldkircher & Florian Huber, 2018. "Unconventional U.S. Monetary Policy: New Tools, Same Channels?," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(4), pages 1-31, October.
    10. Crespo Cuaresma, Jesus & Doppelhofer, Gernot & Feldkircher, Martin & Huber, Florian, 2018. "Spillovers from US monetary policy: Evidence from a time-varying parameter GVAR model," Discussion Paper Series in Economics 31/2018, Norwegian School of Economics, Department of Economics.
    11. Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Identification with external instruments in structural VARs under partial invertibility," Sciences Po publications 24, Sciences Po.
    12. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2018. "The missing link: monetary policy and the labor share," LSE Research Online Documents on Economics 90873, London School of Economics and Political Science, LSE Library.
    13. Hansen, Stephen & McMahon, Michael & Tong, Matthew, 2019. "The long-run information effect of central bank communication," Bank of England working papers 777, Bank of England.
    14. repec:eee:jbfina:v:106:y:2019:i:c:p:34-49 is not listed on IDEAS
    15. Inoue, Atsushi & Rossi, Barbara, 2019. "The effects of conventional and unconventional monetary policy on exchange rates," Journal of International Economics, Elsevier, vol. 118(C), pages 419-447.
    16. Altavilla, Carlo & Brugnolini, Luca & Gürkaynak, Refet S. & Motto, Roberto & Ragusa, Giuseppe, 2019. "Measuring euro area monetary policy," Working Paper Series 2281, European Central Bank.
    17. Lakdawala, Aeimit & Schaffer, Matthew, 2019. "Federal reserve private information and the stock market," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 34-49.
    18. Cieslak, Anna & Schrimpf, Andreas, 2019. "Non-monetary news in central bank communication," Journal of International Economics, Elsevier, vol. 118(C), pages 293-315.
    19. Barbara Rossi, 2018. "Identifying and estimating the effects of unconventional monetary policy in the data: How to do It and what have we learned?," Economics Working Papers 1641, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Elena Gerko & Hélène Rey, 2017. "Monetary Policy in the Capitals of Capital," Journal of the European Economic Association, European Economic Association, vol. 15(4), pages 721-745.
    21. Faia, Ester & Karau, Soeren, 2019. "Systemic Bank Risk and Monetary Policy," CEPR Discussion Papers 13456, C.E.P.R. Discussion Papers.
    22. Benjamin Garcia & Arsenios Skaperdas, "undated". "Inferring the Shadow Rate from Real Activity," Finance and Economics Discussion Series 2017-106, Board of Governors of the Federal Reserve System (US).
    23. N. Palma, 2019. "The existence and persistence of liquidity effects: Evidence from a large-scale historical natural experiment," The School of Economics Discussion Paper Series 1904, Economics, The University of Manchester.
    24. Paul Rudel & Peter Tillmann, 2018. "News Shock Spillovers: How the Euro Area Responds to Expected Fed Policy," MAGKS Papers on Economics 201832, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    More about this item

    Keywords

    Expectations; External Instruments; Information Rigidity; local projections; monetary policy; Survey Forecasts; VARs;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:13396. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.