IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v10y2019i1p145-184.html
   My bibliography  Save this article

Bayesian inference on structural impulse response functions

Author

Listed:
  • Mikkel Plagborg‐Møller

Abstract

I propose to estimate structural impulse responses from macroeconomic time series by doing Bayesian inference on the Structural Vector Moving Average representation of the data. This approach has two advantages over Structural Vector Autoregressions. First, it imposes prior information directly on the impulse responses in a flexible and transparent manner. Second, it can handle noninvertible impulse response functions, which are often encountered in applications. Rapid simulation of the posterior distribution of the impulse responses is possible using an algorithm that exploits the Whittle likelihood. The impulse responses are partially identified, and I derive the frequentist asymptotics of the Bayesian procedure to show which features of the prior information are updated by the data. The procedure is used to estimate the effects of technological news shocks on the U.S. business cycle.

Suggested Citation

  • Mikkel Plagborg‐Møller, 2019. "Bayesian inference on structural impulse response functions," Quantitative Economics, Econometric Society, vol. 10(1), pages 145-184, January.
  • Handle: RePEc:wly:quante:v:10:y:2019:i:1:p:145-184
    DOI: 10.3982/QE926
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE926
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "The Transmission of Monetary Policy Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(3), pages 74-107, July.
    2. Fabio Canova & Filippo Ferroni, 2022. "Mind the Gap! Stylized Dynamic Facts and Structural Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(4), pages 104-135, October.
    3. Fabio Canova & Filippo Ferroni, 2022. "Mind the Gap! Stylized Dynamic Facts and Structural Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(4), pages 104-135, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:10:y:2019:i:1:p:145-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.