IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-6413.html
   My bibliography  Save this paper

Explaining the great moderation: it is not the shocks

Author

Listed:
  • Domenico Giannone
  • Michèle Lenza
  • Lucrezia Reichlin

Abstract

This paper shows that the explanation of the decline in the volatility of GDP growth since the mid-eighties is not the decline in the volatility of exogenous shocks but rather a change in their propagation mechanism.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Domenico Giannone & Michèle Lenza & Lucrezia Reichlin, 2008. "Explaining the great moderation: it is not the shocks," ULB Institutional Repository 2013/6413, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/6413
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/6413/1/dg-0008.pdf
    File Function: dg-0008
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabio Canova & Luca Gambetti & Evi Pappa, 2007. "The Structural Dynamics of Output Growth and Inflation: Some International Evidence," Economic Journal, Royal Economic Society, vol. 117(519), pages 167-191, March.
    2. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    3. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    4. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    5. Efrem Castelnuovo & Paolo Surico, 2005. "The Price Puzzle: Fact or Artefact?," Macroeconomics 0505015, University Library of Munich, Germany, revised 19 Jul 2005.
    6. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    7. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    8. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    9. Dynan, Karen E. & Elmendorf, Douglas W. & Sichel, Daniel E., 2006. "Can financial innovation help to explain the reduced volatility of economic activity?," Journal of Monetary Economics, Elsevier, vol. 53(1), pages 123-150, January.
    10. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    11. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    12. Shaghil Ahmed & Andrew Levin & Beth Anne Wilson, 2004. "Recent U.S. Macroeconomic Stability: Good Policies, Good Practices, or Good Luck?," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 824-832, August.
    13. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    14. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    15. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2007. "Business Cycle Accounting," Econometrica, Econometric Society, vol. 75(3), pages 781-836, May.
    16. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    17. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
    18. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    19. James A. Kahn & Margaret M. McConnell & Gabriel Perez-Quiros, 2002. "On the causes of the increased stability of the U.S. economy," Economic Policy Review, Federal Reserve Bank of New York, vol. 8(May), pages 183-202.
    20. Benoit Mojon, 2007. "Monetary policy, output composition and the Great Moderation," Working Paper Series WP-07-07, Federal Reserve Bank of Chicago.
    21. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    22. Efrem Castelnuovo, 2006. "Assessing Different Drivers of the GreatModeration in the U.S," "Marco Fanno" Working Papers 0025, Dipartimento di Scienze Economiche "Marco Fanno".
    23. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benoit Mojon, 2007. "Monetary policy, output composition and the Great Moderation," Working Paper Series WP-07-07, Federal Reserve Bank of Chicago.
    2. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    3. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    4. Pancrazi, Roberto & Vukotic, Marija, 2012. "Technology Persistence and Monetary Policy," Economic Research Papers 270536, University of Warwick - Department of Economics.
    5. Fabio Canova & Luca Gambetti, 2010. "Do Expectations Matter? The Great Moderation Revisited," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 183-205, July.
    6. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Juan F. Rubio-Ramírez, 2010. "Fortune or Virtue: Time-Variant Volatilities Versus Parameter Drifting in U.S. Data," NBER Working Papers 15928, National Bureau of Economic Research, Inc.
    7. Mayer, Eric & Scharler, Johann, 2011. "Noisy information, interest rate shocks and the Great Moderation," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 568-581.
    8. Adam, Klaus, 2009. "Monetary policy and aggregate volatility," Journal of Monetary Economics, Elsevier, vol. 56(S), pages 1-18.
    9. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    10. Kostas Mavromatis, 2018. "U.S. Monetary Regimes and Optimal Monetary Policy in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1441-1478, October.
    11. Qazi Haque, 2017. "Monetary Policy, Target Inflation and the Great Moderation: An Empirical Investigation," School of Economics Working Papers 2017-10, University of Adelaide, School of Economics.
    12. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    13. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    14. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    15. Richard Higgins, C., 2020. "Financial frictions and changing macroeconomic volatility," Journal of Macroeconomics, Elsevier, vol. 64(C).
    16. Grydaki, Maria & Bezemer, Dirk, 2013. "The role of credit in the Great Moderation: A multivariate GARCH approach," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4615-4626.
    17. Anton Nakov & Andrea Pescatori, 2010. "Oil and the Great Moderation," Economic Journal, Royal Economic Society, vol. 120(543), pages 131-156, March.
    18. Mumtaz, Haroon & Zanetti, Francesco, 2012. "Neutral technology shocks and employment dynamics: results based on an RBC identification scheme," Bank of England working papers 453, Bank of England.
    19. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    20. Luigi Paciello, 2011. "Does Inflation Adjust Faster to Aggregate Technology Shocks than to Monetary Policy Shocks?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(8), pages 1663-1684, December.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/6413. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.