IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference

  • Juan F. Rubio-Ram�rez
  • Daniel F. Waggoner
  • Tao Zha

Structural vector autoregressions (SVARs) are widely used for policy analysis and to provide stylized facts for dynamic stochastic general equilibrium (DSGE) models; yet no workable rank conditions to ascertain whether an SVAR is globally identified have been established. Moreover, when nonlinear identifying restrictions are used, no efficient algorithms exist for small-sample estimation and inference. This paper makes four contributions towards filling these important gaps in the literature. First, we establish general rank conditions for global identification of both identified and exactly identified models. These rank conditions are sufficient for general identification and are necessary and sufficient for exact identification. Second, we show that these conditions can be easily implemented and that they apply to a wide class of identifying restrictions, including linear and certain nonlinear restrictions. Third, we show that the rank condition for exactly identified models amounts to a straightforward counting exercise. Fourth, we develop efficient algorithms for small-sample estimation and inference, especially for SVARs with nonlinear restrictions. Copyright , Wiley-Blackwell.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1111/j.1467-937X.2009.00578.x
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Oxford University Press in its journal The Review of Economic Studies.

Volume (Year): 77 (2010)
Issue (Month): 2 ()
Pages: 665-696

as
in new window

Handle: RePEc:oup:restud:v:77:y:2010:i:2:p:665-696
Contact details of provider:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pesavento, Elena & Rossi, Barbara, 2004. "Small Sample Confidence Intervals for Multivariate Impulse Response Functions at Long Horizons," CEPR Discussion Papers 4536, C.E.P.R. Discussion Papers.
  2. Fabio Canova & Gianni De Nicolo, 2000. "Monetary disturbances matter for business fluctuations in the G-7," International Finance Discussion Papers 660, Board of Governors of the Federal Reserve System (U.S.).
  3. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
  4. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," Working Paper 96-13, Federal Reserve Bank of Atlanta.
  5. Ben S. Bernanke & Ilian Mihov, 1995. "Measuring Monetary Policy," NBER Working Papers 5145, National Bureau of Economic Research, Inc.
  6. Lawrence J. Christiano & Martin Eichenbaum & Charles Evans, 1994. "The effects of monetary policy shocks: evidence from the flow of funds," Proceedings, Federal Reserve Bank of Dallas, issue Apr.
  7. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
  8. Jon Faust, 1998. "The robustness of identified VAR conclusions about money," International Finance Discussion Papers 610, Board of Governors of the Federal Reserve System (U.S.).
  9. Hausman, Jerry A & Taylor, William E, 1983. "Identification in Linear Simultaneous Equations Models with Covariance Restrictions: An Instrumental Variables Interpretation," Econometrica, Econometric Society, vol. 51(5), pages 1527-49, September.
  10. Christopher A. Sims & Tao Zha, 1994. "Error Bands for Impulse Responses," Cowles Foundation Discussion Papers 1085, Cowles Foundation for Research in Economics, Yale University.
  11. Canova, Fabio & Gambetti, Luca, 2006. "Structural Changes in the US Economy: Bad Luck or Bad Policy?," CEPR Discussion Papers 5457, C.E.P.R. Discussion Papers.
  12. Lawrence J. Christiano & Martin Eichenbaum & Charles Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Proceedings, Federal Reserve Bank of San Francisco, issue Jun.
  13. Daniel F. Waggoner & Tao Zha, 2000. "Likelihood-preserving normalization in multiple equation models," Working Paper 2000-8, Federal Reserve Bank of Atlanta.
  14. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
  15. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
  16. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2004. "Normalization in econometrics," Working Paper 2004-13, Federal Reserve Bank of Atlanta.
  17. Blanchard, Olivier Jean & Quah, Danny, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Reply," American Economic Review, American Economic Association, vol. 83(3), pages 653-58, June.
  18. Timothy Cogley & Thomas Sargent, . "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
  19. Hsiao, Cheng, 2001. "Identification And Dichotomization Of Long- And Short-Run Relations Of Cointegrated Vector Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 17(05), pages 889-912, October.
  20. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-40, September.
  21. Juan F. Rubio-Ramirez & Daniel Waggoner & Tao Zha, 2006. "Markov-Switching Structural Vector Autoregressions: Theory and Application," Computing in Economics and Finance 2006 69, Society for Computational Economics.
  22. Sims, Christopher A. & Zha, Tao, 2006. "Does Monetary Policy Generate Recessions?," Macroeconomic Dynamics, Cambridge University Press, vol. 10(02), pages 231-272, April.
  23. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
  24. Sargent, Thomas J, 1976. "The Observational Equivalence of Natural and Unnatural Rate Theories of Macroeconomics," Journal of Political Economy, University of Chicago Press, vol. 84(3), pages 631-40, June.
  25. Peersman, Gert & Smets, Frank, 2001. "The monetary transmission mechanism in the euro area: more evidence from VAR analysis," Working Paper Series 0091, European Central Bank.
  26. Uhlig, Harald, 1999. "What are the Effects of Monetary Policy on Output? Results from an Agnostic Identification Procedure," CEPR Discussion Papers 2137, C.E.P.R. Discussion Papers.
  27. Renee Fry & Adrian Pagan, 2007. "Some Issues in Using Sign Restrictions for Identifying Structural VARs," NCER Working Paper Series 14, National Centre for Econometric Research.
  28. Cushman, David O. & Zha, Tao, 1997. "Identifying monetary policy in a small open economy under flexible exchange rates," Journal of Monetary Economics, Elsevier, vol. 39(3), pages 433-448, August.
  29. Kim, Soyoung & Roubini, Nouriel, 2000. "Exchange rate anomalies in the industrial countries: A solution with a structural VAR approach," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 561-586, June.
  30. Bekker, Paul A. & Pollock, D. S. G., 1986. "Identification of linear stochastic models with covariance restrictions," Journal of Econometrics, Elsevier, vol. 31(2), pages 179-208, March.
  31. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-91, May.
  32. David B. Gordon & Eric M. Leeper, 1993. "The dynamic impacts of monetary policy: an exercise in tentative identification," Working Paper 93-5, Federal Reserve Bank of Atlanta.
  33. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-16.
  34. Benati, Luca & Mumtaz, Haroon, 2007. "U.S. evolving macroeconomic dynamics: a structural investigation," Working Paper Series 0746, European Central Bank.
  35. Fernandez-Villaverde, Jesus & Francisco Rubio-Ramirez, Juan, 2004. "Comparing dynamic equilibrium models to data: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 123(1), pages 153-187, November.
  36. Eichenbaum, Martin & Evans, Charles L, 1995. "Some Empirical Evidence on the Effects of Shocks to Monetary Policy on Exchange Rates," The Quarterly Journal of Economics, MIT Press, vol. 110(4), pages 975-1009, November.
  37. Harald Uhlig, 1997. "Bayesian Vector Autoregressions with Stochastic Volatility," Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:77:y:2010:i:2:p:665-696. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.