IDEAS home Printed from https://ideas.repec.org/p/red/sed016/472.html
   My bibliography  Save this paper

Inference Based on SVARs Identified with Sign and Zero Restrictions: Theory and Applications

Author

Listed:
  • Juan Rubio-Ramirez

    (Emory University)

  • Daniel Waggoner

    (Federal Reserve Bank of Atlanta)

  • Jonas Arias

    (Federal Reserve Board)

Abstract

In this paper we characterize agnostic priors and propose numerical algorithms for Bayesian inference when using them within SVARs identified by imposing sign and zero restrictions on a function of the structural parameters. As Baumeister and Hamilton (2015a) has made clear, since the data cannot tell apart models satisfying the sign and zero restrictions, priors play a crucial role in this environment. We will emphasize the importance of agnostic priors: any prior density that is equal across observationally equivalent parameters. If the prior is not agnostic, additional restrictions to the proclaimed sign and zero restrictions become part of the identification. While our numerical algorithms use agnostic priors we will show that existing ones use non-agnostic priors. We will use Beaudry, Nam and Wang (2011) work on the relevance of optimism shocks to show the dangers of using non-agnostic priors.

Suggested Citation

  • Juan Rubio-Ramirez & Daniel Waggoner & Jonas Arias, 2016. "Inference Based on SVARs Identified with Sign and Zero Restrictions: Theory and Applications," 2016 Meeting Papers 472, Society for Economic Dynamics.
  • Handle: RePEc:red:sed016:472
    as

    Download full text from publisher

    File URL: https://economicdynamics.org/meetpapers/2016/paper_472.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-16.
    4. Waggoner, Daniel F. & Zha, Tao, 2003. "Likelihood preserving normalization in multiple equation models," Journal of Econometrics, Elsevier, vol. 114(2), pages 329-347, June.
    5. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    6. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
    7. Hyungsik Roger Moon & Frank Schorfheide & Eleonora Granziera & Mihye Lee, 2011. "Inference for VARs Identified with Sign Restrictions," NBER Working Papers 17140, National Bureau of Economic Research, Inc.
    8. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    9. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    10. Andrew Mountford & Harald Uhlig, 2009. "What are the effects of fiscal policy shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 960-992.
    11. repec:oup:restud:v:84:y:2017:i:3:p:1015-1040. is not listed on IDEAS
    12. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 869-902.
    13. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    14. Leonardo Gambacorta & Boris Hofmann & Gert Peersman, 2014. "The Effectiveness of Unconventional Monetary Policy at the Zero Lower Bound: A Cross‐Country Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(4), pages 615-642, June.
    15. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    16. Gordon, David B & Leeper, Eric M, 1994. "The Dynamic Impacts of Monetary Policy: An Exercise in Tentative Identification," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1228-1247, December.
    17. Jon Faust, 1998. "The robustness of identified VAR conclusions about money," International Finance Discussion Papers 610, Board of Governors of the Federal Reserve System (U.S.).
    18. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    19. Maria Abascal & Tatiana Alonso & Sergio Mayordomo, 2013. "Fragmentation in European Financial Markets: Measures, Determinants, and Policy Solutions," Working Papers 1322, BBVA Bank, Economic Research Department.
    20. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    21. Geweke, John, 1986. "Exact Inference in the Inequality Constrained Normal Linear Regression Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(2), pages 127-141, April.
    22. Christiane Baumeister & Luca Benati, 2013. "Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound," International Journal of Central Banking, International Journal of Central Banking, vol. 9(2), pages 165-212, June.
    23. DeJong, David N., 1992. "Co-integration and trend-stationarity in macroeconomic time series : Evidence from the likelihood function," Journal of Econometrics, Elsevier, vol. 52(3), pages 347-370, June.
    24. Dario Caldara & Christophe Kamps, 2017. "The Analytics of SVARs: A Unified Framework to Measure Fiscal Multipliers," Review of Economic Studies, Oxford University Press, vol. 84(3), pages 1015-1040.
    25. Andrew Binning, 2013. "Underidentified SVAR models: A framework for combining short and long-run restrictions with sign-restrictions," Working Paper 2013/14, Norges Bank.
    26. Mariana A. Toran & F. Javier Morales & Sara G. Castellanos, 2012. "Analysis of the Use of Financial Services by Companies in Mexico: What does the 2009 Economic Census tell us?," Working Papers 1216, BBVA Bank, Economic Research Department.
    27. Paul Beaudry & Deokwoo Nam & Jian Wang, 2011. "Do Mood Swings Drive Business Cycles and is it Rational?," NBER Working Papers 17651, National Bureau of Economic Research, Inc.
    28. Zha, Tao, 1999. "Block recursion and structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 90(2), pages 291-316, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed016:472. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: http://edirc.repec.org/data/sedddea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.