IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/68429.html
   My bibliography  Save this paper

VARsignR: Estimating VARs using sign restrictions in R

Author

Listed:
  • Danne, Christian

Abstract

VARsignR identifies structural shocks in Vector Autoregressions (VARs) using sign restrictions. It implements Uhlig’s (2005) rejection method, Uhlig’s (2005) penalty function approach, the Rubio-Ramirez et al. (2010) rejection method, and Fry and Pagan’s (2011) median target method. This vignette shows the usage and provides some technical information on the procedures that should help users to bridge the gap between VARsignR and the underlying technical papers.

Suggested Citation

  • Danne, Christian, 2015. "VARsignR: Estimating VARs using sign restrictions in R," MPRA Paper 68429, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:68429
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/68429/1/MPRA_paper_68429.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Jonas E. Arias & Juan Rubio-Ramirez & Daniel F. Waggoner, 2013. "Inference Based on SVARs Identied with Sign and Zero Restrictions: Theory and Applications," Working Papers 2013-24, FEDEA.
    4. Renée Fry & Adrian Pagan, 2011. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
    5. Hyungsik Roger Moon & Frank Schorfheide & Eleonora Granziera & Mihye Lee, 2011. "Inference for VARs Identified with Sign Restrictions," NBER Working Papers 17140, National Bureau of Economic Research, Inc.
    6. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    7. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    8. Andrew Mountford & Harald Uhlig, 2009. "What are the effects of fiscal policy shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 960-992.
    9. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 869-902.
    10. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    11. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    12. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    13. Jordi Galí, 1992. "How Well Does The IS-LM Model Fit Postwar U. S. Data?," The Quarterly Journal of Economics, Oxford University Press, vol. 107(2), pages 709-738.
    14. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    15. Paustian Matthias, 2007. "Assessing Sign Restrictions," The B.E. Journal of Macroeconomics, De Gruyter, vol. 7(1), pages 1-33, August.
    16. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    17. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Tomioka & Rod Tyers, 2016. "Has Foreign Growth Contributed to Stagnation and Inequality in Japan?," Economics Discussion / Working Papers 16-14, The University of Western Australia, Department of Economics.

    More about this item

    Keywords

    Sign restrictions; vector autoregression; Bayesian.;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:68429. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.