IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/68429.html
   My bibliography  Save this paper

VARsignR: Estimating VARs using sign restrictions in R

Author

Listed:
  • Danne, Christian

Abstract

VARsignR identifies structural shocks in Vector Autoregressions (VARs) using sign restrictions. It implements Uhlig’s (2005) rejection method, Uhlig’s (2005) penalty function approach, the Rubio-Ramirez et al. (2010) rejection method, and Fry and Pagan’s (2011) median target method. This vignette shows the usage and provides some technical information on the procedures that should help users to bridge the gap between VARsignR and the underlying technical papers.

Suggested Citation

  • Danne, Christian, 2015. "VARsignR: Estimating VARs using sign restrictions in R," MPRA Paper 68429, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:68429
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/68429/1/MPRA_paper_68429.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    3. Juan F. Rubio-Ramírez & Jonas E. Arias & Daniel F. Waggoner, 2013. "Inference Based on SVARs Identied with Sign and Zero Restrictions: Theory and Applications," Working Papers 1338, BBVA Bank, Economic Research Department.
    4. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    5. Andrew Mountford & Harald Uhlig, 2009. "What are the effects of fiscal policy shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 960-992.
    6. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    7. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    8. Eleonora Granziera & Hyungsik Roger Moon & Frank Schorfheide, 2018. "Inference for VARs identified with sign restrictions," Quantitative Economics, Econometric Society, vol. 9(3), pages 1087-1121, November.
    9. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    10. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    11. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 869-902.
    12. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    13. Renée Fry & Adrian Pagan, 2011. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
    14. Fabio Canova & Joaquim Pires Pina, 2005. "What VAR Tell us about DSGE Models?," Springer Books, in: Claude Diebolt & Catherine Kyrtsou (ed.), New Trends in Macroeconomics, pages 89-123, Springer.
    15. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    16. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    17. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    18. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    19. Jordi Galí, 1992. "How Well Does The IS-LM Model Fit Postwar U. S. Data?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 709-738.
    20. Jonas E. Arias & Juan F. Rubio-Ramirez & Daniel F. Waggoner, 2014. "Inference Based on SVARs Identified with Sign and Zero Restrictions: Theory and Applications," International Finance Discussion Papers 1100, Board of Governors of the Federal Reserve System (U.S.).
    21. Paustian Matthias, 2007. "Assessing Sign Restrictions," The B.E. Journal of Macroeconomics, De Gruyter, vol. 7(1), pages 1-33, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Tomioka & Rod Tyers, 2016. "Has foreign growth contributed to stagnation and inequality in Japan?," CAMA Working Papers 2016-21, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Eduardo de Sá Fortes Leitão Rodrigues, 2020. "Uncertainty And The Effectiveness Of Fiscal Policy In The United States And Brazil: Svar Approach," Working Papers REM 2020/0150, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    3. Jamilu Iliyasu & Aliyu Rafindadi Sanusi, 2023. "The role of announced exchange rate policies on exchange rate pass-through to consumer prices in an oil-based small open economy," SN Business & Economics, Springer, vol. 3(1), pages 1-20, January.
    4. Martha Elena Delgado-Rojas & Hernán Rincón-Castro, 2017. "Incertidumbre acerca de la política fiscal y ciclo económico," Borradores de Economia 1008, Banco de la Republica de Colombia.
    5. Emilio Congregado & Ewa Galecka-Burdziak & Antonio A. Golpe & Robert Pater, 2021. "Separating aggregate discouraged and added worker effects: the case of a former transition country," Oeconomia Copernicana, Institute of Economic Research, vol. 12(3), pages 729-760, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    3. Arias, Jonas E. & Caldara, Dario & Rubio-Ramírez, Juan F., 2019. "The systematic component of monetary policy in SVARs: An agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 1-13.
    4. Alessio Volpicella, 2022. "SVARs Identification Through Bounds on the Forecast Error Variance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1291-1301, June.
    5. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    6. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    7. Herwartz, Helmut & Plödt, Martin, 2014. "Sign restrictions and statistical identification under volatility breaks -- Simulation based evidence and an empirical application to monetary policy analysis," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100326, Verein für Socialpolitik / German Economic Association.
    8. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    9. Klug, Thorsten & Mayer, Eric & Schuler, Tobias, 2022. "The corporate saving glut and the current account in Germany," Journal of International Money and Finance, Elsevier, vol. 121(C).
    10. Castelnuovo, Efrem, 2016. "Modest macroeconomic effects of monetary policy shocks during the great moderation: An alternative interpretation," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 300-314.
    11. Sam Ouliaris & Adrian Pagan, 2016. "A Method for Working with Sign Restrictions in Structural Equation Modelling," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 605-622, October.
    12. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    13. Paul Carrillo‐Maldonado, 2023. "Partial identification for growth regimes: The case of Latin American countries," Metroeconomica, Wiley Blackwell, vol. 74(3), pages 557-583, July.
    14. Bruno Perdigão, 2019. "“Still" an Agnostic Procedure to Identify Monetary Policy Shocks with Sign Restrictions," Working Papers Series 494, Central Bank of Brazil, Research Department.
    15. Gehrke, Britta & Yao, Fang, 2017. "Are supply shocks important for real exchange rates? A fresh view from the frequency-domain," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 99-114.
    16. Herwartz, Helmut & Wang, Shu, 2023. "Point estimation in sign-restricted SVARs based on independence criteria with an application to rational bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    17. Andrew Binning, 2013. "Underidentified SVAR models: A framework for combining short and long-run restrictions with sign-restrictions," Working Paper 2013/14, Norges Bank.
    18. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    19. Harrison, Andre & Reed, Robert R., 2023. "Gross capital inflows, the U.S. economy, and the response of the Federal Reserve," Journal of International Money and Finance, Elsevier, vol. 139(C).
    20. Uhrin, Gábor B. & Herwartz, Helmut, 2016. "Monetary policy shocks, set-identifying restrictions, and asset prices: A benchmarking approach for analyzing set-identified models," University of Göttingen Working Papers in Economics 295, University of Goettingen, Department of Economics.

    More about this item

    Keywords

    Sign restrictions; vector autoregression; Bayesian.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:68429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.