IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Inference Based on SVARs Identied with Sign and Zero Restrictions: Theory and Applications

  • Jonas E. Arias
  • Juan Rubio-Ramirez
  • Daniel F. Waggoner

Are optimism shocks an important source of business cycle fluctuations? Are deficit-financed tax cuts better than deficit-financed spending to increase output? These questions have been previously studied using SVARs identified with sign and zero restrictions and the answers have been positive and definite in both cases. While the identification of SVARs with sign and zero restrictions is theoretically attractive because it allows the researcher to remain agnostic with respect to the responses of the key variables of interest, we show that current implementation algorithms do not respect the agnosticism of the theory. These algorithms impose additional sign restrictions on variables that are seemingly unrestricted that bias the results and produce misleading confidence intervals. We provide an alternative and efficient algorithm that does not introduce any additional sign restriction, hence preserving the agnosticism of the theory. Without the additional restrictions, it is hard to support the claim that either optimism shocks are an important source of business cycle fluctuations or deficit-financed tax cuts work best at improving output. Our algorithm is not only correct but also faster than current ones.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by FEDEA in its series Working Papers with number 2013-24.

in new window

Date of creation: Dec 2013
Date of revision:
Handle: RePEc:fda:fdaddt:2013-24
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Juan F. Rubio-Ramírez & Daniel F.Waggoner & Tao Zha, 2008. "Structural vector autoregressions: theory of identification and algorithms for inference," FRB Atlanta Working Paper No. 2008-18, Federal Reserve Bank of Atlanta.
  2. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
  3. Jon Faust, 1998. "The robustness of identified VAR conclusions about money," International Finance Discussion Papers 610, Board of Governors of the Federal Reserve System (U.S.).
  4. Maximo Camacho & Marcos Dal Bianco & Gabriel Perez Quiros, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Working Papers 1201, BBVA Bank, Economic Research Department.
  5. Christopher A. Sims & Tao Zha, 2005. "Were There Regime Switches in U.S. Monetary Policy?," Working Papers 92, Princeton University, Department of Economics, Center for Economic Policy Studies..
  6. Christiane Baumeister & Luca Benati, 2013. "Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound," International Journal of Central Banking, International Journal of Central Banking, vol. 9(2), pages 165-212, June.
  7. Andrew Mountford & Harald Uhlig, 2009. "What are the effects of fiscal policy shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 960-992.
  8. Andrew Binning, 2013. "Underidentified SVAR models: A framework for combining short and long-run restrictions with sign-restrictions," Working Paper 2013/14, Norges Bank.
  9. Ben S. Bernanke & Ilian Mihov, 1995. "Measuring monetary policy," Working Papers in Applied Economic Theory 95-09, Federal Reserve Bank of San Francisco.
  10. Gordon, David B & Leeper, Eric M, 1994. "The Dynamic Impacts of Monetary Policy: An Exercise in Tentative Identification," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1228-47, December.
  11. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
  12. Uhlig, Harald, 1999. "What are the Effects of Monetary Policy on Output? Results from an Agnostic Identification Procedure," CEPR Discussion Papers 2137, C.E.P.R. Discussion Papers.
  13. Paul Beaudry & Deokwoo Nam & Jian Wang, 2011. "Do Mood Swings Drive Business Cycles and is it Rational?," NBER Working Papers 17651, National Bureau of Economic Research, Inc.
  14. Lawrence J. Christiano & Martin Eichenbaum & Charles Evans, 1994. "The effects of monetary policy shocks: evidence from the flow of funds," Proceedings, Federal Reserve Bank of Dallas, issue Apr.
  15. Mariana A. Toran & F. Javier Morales & Sara G. Castellanos, 2012. "Analysis of the Use of Financial Services by Companies in Mexico: What does the 2009 Economic Census tell us?," Working Papers 1216, BBVA Bank, Economic Research Department.
  16. Daniel F. Waggoner & Tao Zha, 2000. "Likelihood-preserving normalization in multiple equation models," FRB Atlanta Working Paper No. 2000-8, Federal Reserve Bank of Atlanta.
  17. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
  18. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
  19. Dario Caldara & Christophe Kamps, 2012. "The analytics of SVARs: a unified framework to measure fiscal multipliers," Finance and Economics Discussion Series 2012-20, Board of Governors of the Federal Reserve System (U.S.).
  20. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-16.
  21. Geweke, John, 1986. "Exact Inference in the Inequality Constrained Normal Linear Regression Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(2), pages 127-41, April.
  22. Maria Abascal & Tatiana Alonso & Sergio Mayordomo, 2013. "Fragmentation in European Financial Markets: Measures, Determinants, and Policy Solutions," Working Papers 1322, BBVA Bank, Economic Research Department.
  23. Zha, Tao, 1999. "Block recursion and structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 90(2), pages 291-316, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fda:fdaddt:2013-24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carmen Arias)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.