IDEAS home Printed from https://ideas.repec.org/a/anr/reveco/v10y2018p615-643.html

Macroeconomic Nowcasting and Forecasting with Big Data

Author

Listed:
  • Brandyn Bok

    (Federal Reserve Bank of New York, New York, New York 10045, USA)

  • Daniele Caratelli

    (Department of Economics, Stanford University, Stanford, California 94305, USA)

  • Domenico Giannone

    (Federal Reserve Bank of New York, New York, New York 10045, USA)

  • Argia M. Sbordone

    (Federal Reserve Bank of New York, New York, New York 10045, USA)

  • Andrea Tambalotti

    (Federal Reserve Bank of New York, New York, New York 10045, USA)

Abstract

Data, data, data…. Economists know their importance well, especially when it comes to monitoring macroeconomic conditions—the basis for making informed economic and policy decisions. Handling large and complex data sets was a challenge that macroeconomists engaged in real-time analysis faced long before so-called big data became pervasive in other disciplines. We review how methods for tracking economic conditions using big data have evolved over time and explain how econometric techniques have advanced to mimic and automate best practices of forecasters on trading desks, at central banks, and in other market-monitoring roles. We present in detail the methodology underlying the New York Fed Staff Nowcast, which employs these innovative techniques to produce early estimates of GDP growth, synthesizing a wide range of macroeconomic data as they become available.Data, data, data... Economists know their importance well, especially when it comes to monitoring macroeconomic conditions?the basis for making informed economic and policy decisions. Handling large and complex data sets was a challenge that macroeconomists engaged in real-time analysis faced long before so-called big data became pervasive in other disciplines. We review how methods for tracking economic conditions using big data have evolved over time and explain how econometric techniques have advanced to mimic and automate best practices of forecasters on trading desks, at central banks, and in other market-monitoring roles. We present in detail the methodology underlying the New York Fed Staff Nowcast, which employs these innovative techniques to produce early estimates of GDP growth, synthesizing a wide range of macroeconomic data as they become available.

Suggested Citation

  • Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
  • Handle: RePEc:anr:reveco:v:10:y:2018:p:615-643
    DOI: 10.1146/annurev-economics-080217-053214
    as

    Download full text from publisher

    File URL: https://doi.org/10.1146/annurev-economics-080217-053214
    Download Restriction: Full text downloads are only available to subscribers. Visit the abstract page for more information.

    File URL: https://libkey.io/10.1146/annurev-economics-080217-053214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anr:reveco:v:10:y:2018:p:615-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: http://www.annualreviews.org (email available below). General contact details of provider: http://www.annualreviews.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.