IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i6p2335-2353.html
   My bibliography  Save this article

Leverage, heavy-tails and correlated jumps in stochastic volatility models

Author

Listed:
  • Nakajima, Jouchi
  • Omori, Yasuhiro

Abstract

Efficient and fast Markov chain Monte Carlo estimation methods for the stochastic volatility model with leverage effects, heavy-tailed errors and jump components, and for the stochastic volatility model with correlated jumps are proposed. The methods are illustrated using simulated data and are applied to analyze daily stock returns data on S&P500 index and TOPIX. Model comparisons are conducted based on the marginal likelihood for various SV models including the superposition model.

Suggested Citation

  • Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2335-2353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00168-0
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    3. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
    4. Siddhartha Chib & Ivan Jeliazkov, 2005. "Accept-reject Metropolis-Hastings sampling and marginal likelihood estimation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 30-44.
    5. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    6. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    7. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    8. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    9. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    10. Bartolucci, F. & De Luca, G., 2003. "Likelihood-based inference for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 445-449, March.
    11. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    12. John M. Maheu & Thomas H. McCurdy, 2004. "News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 755-793, April.
    13. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    14. Raggi, Davide & Bordignon, Silvano, 2006. "Comparing stochastic volatility models through Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1678-1699, April.
    15. Masahito Kobayashi, 2005. "Testing for Volatility Jumps in the Stochastic Volatility Process," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 143-157, June.
    16. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    17. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauwens, Luc & Rombouts, Jeroen V.K., 2012. "On marginal likelihood computation in change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3415-3429.
    2. Lopes Moreira Da Veiga, María Helena & Ruiz Ortega, Esther & Mao, Xiuping, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
    4. repec:eee:ecolet:v:155:y:2017:i:c:p:144-148 is not listed on IDEAS
    5. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
    6. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    7. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
    8. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    9. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    10. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution Models," CIRJE F-Series CIRJE-F-738, CIRJE, Faculty of Economics, University of Tokyo.
    11. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
    12. Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," CORE Discussion Papers 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. repec:spr:sistpr:v:20:y:2017:i:2:d:10.1007_s11203-016-9139-z is not listed on IDEAS
    14. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    15. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    16. Patricia Lengua & Cristian Bayes & Gabriel Rodríguez, 2015. " A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    17. António Alberto Santos & João Andrade, 2014. "Stochastic Volatility Estimation with GPU Computing," GEMF Working Papers 2014-10, GEMF, Faculty of Economics, University of Coimbra.
    18. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2335-2353. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.