IDEAS home Printed from
   My bibliography  Save this article

Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review


  • Han C.
  • Carlin B. P.


No abstract is available for this item.

Suggested Citation

  • Han C. & Carlin B. P., 2001. "Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1122-1132, September.
  • Handle: RePEc:bes:jnlasa:v:96:y:2001:m:september:p:1122-1132

    Download full text from publisher

    File URL:
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    3. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    4. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
    7. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    8. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    9. Wilkinson, Louise & Winsen, Joseph, 2002. "What We Can Learn from a Statistical Analysis of Electricity Prices in New South Wales," The Electricity Journal, Elsevier, vol. 15(3), pages 60-69, April.
    10. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chen, Min & Wang, Xinlei, 2011. "Approximate predictive densities and their applications in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1570-1580, April.
    2. Nicola J. Cooper & Paul C. Lambert & Keith R. Abrams & Alexander J. Sutton, 2007. "Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis," Health Economics, John Wiley & Sons, Ltd., vol. 16(1), pages 37-56.
    3. Summers, Peter M., 2004. "Bayesian evidence on the structure of unemployment," Economics Letters, Elsevier, vol. 83(3), pages 299-306, June.
    4. McGrory, C.A. & Titterington, D.M., 2007. "Variational approximations in Bayesian model selection for finite mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5352-5367, July.
    5. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    6. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
    7. Lefebvre, Geneviève & Steele, Russell & Vandal, Alain C., 2010. "A path sampling identity for computing the Kullback-Leibler and J divergences," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1719-1731, July.
    8. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
    9. Peter Austin & Michael Escobar, 2003. "The use of finite mixture models to estimate the distribution of the health utilities index in the presence of a ceiling effect," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(8), pages 909-923.
    10. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    11. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:96:y:2001:m:september:p:1122-1132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.