IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v12y2009i1p105-126.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations

Author

Listed:
  • David Ardia

Abstract

A Bayesian estimation of a regime-switching threshold asymmetric GARCH model is proposed. The specification is based on a Markov-switching model with Student-t innovations and K separate GJR(1,1) processes whose asymmetries are located at free non-positive threshold parameters. The model aims at determining whether or not: (i) structural breaks are present within the volatility dynamics; (ii) asymmetries (leverage effects) are present, and are different between regimes and (iii) the threshold parameters (locations of bad news) are similar between regimes. A novel MCMC scheme is proposed which allows for a fully automatic Bayesian estimation of the model. The presence of two distinct volatility regimes is shown in an empirical application to the Swiss Market Index log-returns. The posterior results indicate no differences with regards to the asymmetries and their thresholds when comparing highly volatile periods with the milder ones. Comparisons with a single-regime specification indicates a better in-sample fit and a better forecasting performance for the Markov-switching model. Copyright The Author(s). Journal compilation Royal Economic Society 2008

Suggested Citation

  • David Ardia, 2009. "Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
  • Handle: RePEc:ect:emjrnl:v:12:y:2009:i:1:p:105-126
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:12:y:2009:i:1:p:105-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.