IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01821134.html

Specific Markov-switching behaviour for ARMA parameters

Author

Listed:
  • Jean-François Carpantier

    (CERGAM - Centre d'Études et de Recherche en Gestion d'Aix-Marseille - AMU - Aix Marseille Université - UTLN - Université de Toulon)

  • Arnaud Dufays

Abstract

We propose an estimation method that circumvents the path dependence problem existing in Change-Point (CP) and Markov Switching (MS) ARMA models. Our model embeds a sticky infinite hidden Markov-switching structure (sticky IHMM), which makes possible a self-determination of the number of regimes as well as of the specification : CP or MS. Furthermore, CP and MS frameworks usually assume that all the model parameters vary from one regime to another. We relax this restrictive assumption. As illustrated by simulations on moderate samples (300 observations), the sticky IHMM-ARMA algorithm detects which model parameters change over time. Applications to the U.S. GDP growth and the DJIA realized volatility highlight the relevance of estimating different structural breaks for the mean and variance parameters.

Suggested Citation

  • Jean-François Carpantier & Arnaud Dufays, 2014. "Specific Markov-switching behaviour for ARMA parameters," Working Papers hal-01821134, HAL.
  • Handle: RePEc:hal:wpaper:hal-01821134
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maheu, John M. & Yang, Qiao, 2016. "An infinite hidden Markov model for short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 202-220.
    2. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01821134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.