IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Structural breaks and GARCH models of stock return volatility: The case of South Africa

  • Babikir, Ali
  • Gupta, Rangan
  • Mwabutwa, Chance
  • Owusu-Sekyere, Emmanuel

This paper investigates the empirical relevance of structural breaks in forecasting stock return volatility using both in-sample and out-of-sample tests applied to daily returns of the Johannesburg Stock Exchange (JSE) All Share Index from 07/02/1995 to 08/25/2010. We find evidence of structural breaks in the unconditional variance of the stock returns series over the period, with high levels of persistence and variability in the parameter estimates of the GARCH(1,1) model across the sub-samples defined by the structural breaks. This indicates that structural breaks are empirically relevant to stock return volatility in South Africa. However, based on the out-of-sample forecasting exercise, we find that even though there structural breaks in the volatility, there are no statistical gains from using competing models that explicitly accounts for structural breaks, relative to a GARCH(1,1) model with expanding window. This could be because of the fact that the two identified structural breaks occurred in our out-of-sample, and recursive estimation of the GARCH(1,1) model is perhaps sufficient to account for the effect of the breaks on the parameter estimates. Finally, we highlight that, given the point of the breaks, perhaps what seems more important in South Africa, is accounting for leverage effects, especially in terms of long-horizon forecasting of stock return volatility.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0264999312002118
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Economic Modelling.

Volume (Year): 29 (2012)
Issue (Month): 6 ()
Pages: 2435-2443

as
in new window

Handle: RePEc:eee:ecmode:v:29:y:2012:i:6:p:2435-2443
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/30411

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
  2. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
  3. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  4. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
  5. Ruthira Naraidoo & Leroi Raputsoane, 2010. "Zone‐Targeting Monetary Policy Preferences And Financial Market Conditions: A Flexible Non‐Linear Policy Reaction Function Of The Sarb Monetary Policy," South African Journal of Economics, Economic Society of South Africa, vol. 78(4), pages 400-417, December.
  6. repec:cup:cbooks:9780521770415 is not listed on IDEAS
  7. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
  8. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  9. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
  10. Kenneth D. West & Whitney K. Newey, 1995. "Automatic Lag Selection in Covariance Matrix Estimation," NBER Technical Working Papers 0144, National Bureau of Economic Research, Inc.
  11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  12. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
  13. repec:cup:cbooks:9780521779654 is not listed on IDEAS
  14. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
  15. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  16. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  17. Elena Andreou & Eric Ghysels, 2001. "Detecting Multiple Breaks in Financial Market Volatility Dynamics," University of Cyprus Working Papers in Economics 0202, University of Cyprus Department of Economics.
  18. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  19. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  20. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  21. Gupta, Rangan & Modise, Mampho P., 2012. "South African stock return predictability in the context data mining: The role of financial variables and international stock returns," Economic Modelling, Elsevier, vol. 29(3), pages 908-916.
  22. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  23. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  24. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
  25. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:6:p:2435-2443. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.