Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this articleEmpirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.najef.2020.101163
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alberto Humala & Gabriel Rodriguez, 2013.
"Some stylized facts of return in the foreign exchange and stock markets in Peru,"
Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(2), pages 139-158, May.
- Humala, Alberto & Rodriguez, Gabriel, 2010. "Some stylized facts of returns in the foreign exchange and stock markets in Peru," Working Papers 2010-017, Banco Central de Reserva del Perú.
- Alberto Humala & Gabriel Rodriguez, 2011. "Some Stylized Facts of Returns in the Foreign Exchange and Stock Markets in Peru," Documentos de Trabajo / Working Papers 2011-325, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Christian Francq & Michel Roussignol & Jean‐Michel Zakoian, 2001.
"Conditional Heteroskedasticity Driven by Hidden Markov Chains,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 197-220, March.
- Francq, Christian & Roussignol, Michel & Zakoian, Jean-Michel, 1998. "Conditional heteroskedasticity driven by hidden Markov chains," SFB 373 Discussion Papers 1998,86, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Christian Francq & Michel Roussignol & Jean-Michel Zakoïan, 1998. "Conditional Heteroskedasticity Driven by Hidden Markov Chains," Working Papers 98-45, Center for Research in Economics and Statistics.
- Miguel Ataurima Arellano & Erika Collantes & Gabriel Rodriguez, 2017. "Empirical Modeling of Latin American Stock and Forex Markets Returns and Volatility using Markov-Switching GARCH Models," Documentos de Trabajo / Working Papers 2017-436, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010.
"Theory and inference for a Markov switching GARCH model,"
Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
- Luc, BAUWENS & Arie, PREMINGER & Jeroen, ROMBOUTS, 2007. "Theory and inference for a Markov switching GARCH model," Discussion Papers (ECON - Département des Sciences Economiques) 2007033, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen VK, 2010. "Theory and inference for a Markov switching Garch model," LIDAM Reprints CORE 2303, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2007. "Theory and Inference for a Markov-Switching GARCH Model," Cahiers de recherche 0733, CIRPEE.
- BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen V.K., 2007. "Theory and inference for a Markov switching GARCH model," LIDAM Discussion Papers CORE 2007055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2007. "Theory and inference for a Markov switching Garch model," Cahiers de recherche 07-09, HEC Montréal, Institut d'économie appliquée.
- David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2012.
"Volatility Spillovers from the US to Australia and China across the GFC,"
Documentos de Trabajo del ICAE
2012-30, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & R.J. Powell & A.K. Singh, 2013. "Volatility Spillovers from the US to Australia and China across the GFC," Tinbergen Institute Discussion Papers 13-009/III, Tinbergen Institute, revised 01 Feb 2013.
- David E Allen & Michael McAleer & Robert J Powell & Abhay Kumar Singh, 2012. "Volatility spillovers from the US to Australia and China across the GFC," KIER Working Papers 838, Kyoto University, Institute of Economic Research.
- Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
- Dueker, Michael J, 1997.
"Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
- Michael J. Dueker, 1995. "Markov switching in GARCH processes and mean reverting stock market volatility," Working Papers 1994-015, Federal Reserve Bank of St. Louis.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521770415, November.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
- Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
- Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(4), pages 537-542.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, . "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report, Federal Reserve Bank of Minneapolis.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
- Caporale, Guglielmo Maria & Zekokh, Timur, 2019.
"Modelling volatility of cryptocurrencies using Markov-Switching GARCH models,"
Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
- Guglielmo Maria Caporale & Timur Zekokh, 2018. "Modelling Volatility of Cryptocurrencies Using Markov-Switching Garch Models," CESifo Working Paper Series 7167, CESifo.
- Trottier, Denis-Alexandre & Ardia, David, 2016. "Moments of standardized Fernandez–Steel skewed distributions: Applications to the estimation of GARCH-type models," Finance Research Letters, Elsevier, vol. 18(C), pages 311-316.
- Robert Engle, 2004.
"Risk and Volatility: Econometric Models and Financial Practice,"
American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
- Engle III, Robert F., 2003. "Risk and Volatility: Econometric Models and Financial Practice," Nobel Prize in Economics documents 2003-4, Nobel Prize Committee.
- Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
- Hayet Ben Haj Hamida & Francesco Scalera, 2019. "Threshold Mean Reversion and Regime Changes of Cryptocurrencies using SETAR-MSGARCH Models," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 9(3), pages 221-229, July.
- Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018.
"Markov switching GARCH models for Bayesian hedging on energy futures markets,"
Energy Economics, Elsevier, vol. 70(C), pages 545-562.
- Roberto Casarin & Monica Billio & Anthony Osuntuyi, 2014. "Markov Switching GARCH models for Bayesian Hedging on Energy Futures Markets," Working Papers 2014:07, Department of Economics, University of Venice "Ca' Foscari".
- Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
- David Ardia, 2008. "Financial Risk Management with Bayesian Estimation of GARCH Models," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-78657-3, December.
- Bauwens, Luc & De Backer, Bruno & Dufays, Arnaud, 2014.
"A Bayesian method of change-point estimation with recurrent regimes: Application to GARCH models,"
Journal of Empirical Finance, Elsevier, vol. 29(C), pages 207-229.
- BAUWENS, Luc & DE BACKER, Bruno & DUFAYS, Arnaud, 2014. "A Bayesian method of change-point estimation with recurrent regimes: application to GARCH models," LIDAM Reprints CORE 2641, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Moore, Tomoe & Wang, Ping, 2007. "Volatility in stock returns for new EU member states: Markov regime switching model," International Review of Financial Analysis, Elsevier, vol. 16(3), pages 282-292.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Wang, Ping & Theobald, Mike, 2008. "Regime-switching volatility of six East Asian emerging markets," Research in International Business and Finance, Elsevier, vol. 22(3), pages 267-283, September.
- Bauwens, Luc & Laurent, Sebastien, 2005.
"A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
- BAUWENS, Luc & LAURENT, Sébastien, 2005. "A new class of multivariate skew densities, with application to generalized autoregressive conditional heteroscedasticity models," LIDAM Reprints CORE 1793, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Tom Doan, "undated". "LOGMVSKEWT: RATS procedure to compute function for log density of multivariate skew-t distribution," Statistical Software Components RTS00107, Boston College Department of Economics.
- Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
- repec:eme:sefpps:v:30:y:2013:i:1:p:139-158 is not listed on IDEAS
- Francq, Christian & ZakoI¨an, Jean-Michel, 2005. "The L2-structures of standard and switching-regime GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1557-1582, September.
- Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327, Decembrie.
- Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
- Hamilton, James D. & Susmel, Raul, 1994.
"Autoregressive conditional heteroskedasticity and changes in regime,"
Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
- Tom Doan, "undated". "RATS programs to estimate Hamilton-Susmel Markov Switching ARCH model," Statistical Software Components RTZ00083, Boston College Department of Economics.
- Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201, Decembrie.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Usha Rekha Chinthapalli, 2021. "A Comparative Analysis on Probability of Volatility Clusters on Cryptocurrencies, and FOREX Currencies," JRFM, MDPI, vol. 14(7), pages 1-23, July.
- Manner, Hans & Rodríguez, Gabriel & Stöckler, Florian, 2024.
"A changepoint analysis of exchange rate and commodity price risks for Latin American stock markets,"
International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1385-1403.
- Hans Manner & Gabriel Rodriguez & Florian St ckler, 2021. "A changepoint analysis of exchange rate and commodity price risks for Latin American stock markets," Graz Economics Papers 2021-14, University of Graz, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Caporale, Guglielmo Maria & Zekokh, Timur, 2019.
"Modelling volatility of cryptocurrencies using Markov-Switching GARCH models,"
Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
- Guglielmo Maria Caporale & Timur Zekokh, 2018. "Modelling Volatility of Cryptocurrencies Using Markov-Switching Garch Models," CESifo Working Paper Series 7167, CESifo.
- Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
- Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
- Thomas Chuffart, 2015.
"Selection Criteria in Regime Switching Conditional Volatility Models,"
Econometrics, MDPI, vol. 3(2), pages 1-28, May.
- Thomas Chuffart, 2013. "Selection Criteria in Regime Switching Conditional Volatility Models," Working Papers halshs-00844413, HAL.
- Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Post-Print hal-01457388, HAL.
- Thomas Chuffart, 2013. "Selection Criteria in Regime Switching Conditional Volatility Models," AMSE Working Papers 1339, Aix-Marseille School of Economics, France, revised 14 Jul 2013.
- Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
- José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado & Mario Iván Contreras-Valdez, 2022. "COVID Asymmetric Impact on the Risk Premium of Developed and Emerging Countries’ Stock Markets," Mathematics, MDPI, vol. 10(9), pages 1-36, April.
- King, Daniel & Botha, Ferdi, 2015.
"Modelling stock return volatility dynamics in selected African markets,"
Economic Modelling, Elsevier, vol. 45(C), pages 50-73.
- Daniel King & Ferdi Botha, 2014. "Modelling Stock Return Volatility Dynamics in Selected African Markets," Working Papers 410, Economic Research Southern Africa.
- Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022.
"On the volatility of cryptocurrencies,"
Research in International Business and Finance, Elsevier, vol. 62(C).
- Thanasis Stengos & Theodore Panagiotidis & Georgios Papapanagiotou, 2022. "On the volatility of cryptocurrencies," Working Papers 2202, University of Guelph, Department of Economics and Finance.
- Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
- Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
- Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2019. "A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading," Energies, MDPI, vol. 13(1), pages 1-24, December.
- Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016.
"Efficient Gibbs sampling for Markov switching GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
- Monica Billio & Roberto Casarin & Anthony Osuntuyi, 2012. "Efficient Gibbs Sampling for Markov Switching GARCH Models," Working Papers 2012:35, Department of Economics, University of Venice "Ca' Foscari".
- Ardia, David & Hoogerheide, Lennart F., 2010.
"Efficient Bayesian estimation and combination of GARCH-type models,"
MPRA Paper
22919, University Library of Munich, Germany.
- David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
- Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
- Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
- Carlos Alberto Gonçalves da Silva, 2020. "Impacts of Covid-19 Pandemic and Persistence of Volatility in the Returns of the Brazilian Stock Exchange: An Application of the Markov Regime Switching GARCH (MRS-GARCH) Model," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 8(2), pages 62-72.
- Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Abdellah Tahiri & Brahim Benaid & Hassane Bouzahir & Naushad Ali Mamode Khan, 2021. "Testing for the Number of Regimes in Financial Time Series GARCH Volatility," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 9(2), pages 82-94.
More about this item
Keywords
MS-GARCH models; GARCH models; Returns; Volatility; Latin American countries; High-income countries; Stock; Forex;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:52:y:2020:i:c:s1062940820300607. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.