IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20130009.html
   My bibliography  Save this paper

Volatility Spillovers from the US to Australia and China across the GFC

Author

Listed:
  • David E. Allen

    (Edith Cowan University)

  • Michael McAleer

    (Econometric Institute, Erasmus University Rotterdam, Complutense University of Madrid, and Kyoto University)

  • R.J. Powell

    (Edith Cowan University)

  • A.K. Singh

    (Edith Cowan University)

Abstract

This paper features an analysis of volatility spillover effects from the US market, represented by the S&P500 index to the Australian capital market as represented by the Australian S&P200 for a period running from 12th September 2002 to 9th September 2012. This captures the impact of the Global Financial Crisis (GFC). The GARCH analysis features an exploration of whether there are any spillover effects in the mean equations as well as in the variance equations. We adopt a bi-mean equation to model the conditional mean in the Australian markets plus an ARMA model to capture volatility spillovers from the US. We also apply a Markov Switching GARCH model to explore the existence of regime changes during this period and we also explore the non-constancy of correlations between the markets and apply a moving window of 120 days of daily observations to explore time-varying conditional and fitted correlations. There appears to be strong evidence of regime switching behaviour in the Australian market and changes in correlations between the two markets particularly in the period of the GFC. We also apply a tri-variate Cholesky-GARCH model to include potential effects from the Chinese market, as represented by the Hang Seng Index.

Suggested Citation

  • David E. Allen & Michael McAleer & R.J. Powell & A.K. Singh, 2013. "Volatility Spillovers from the US to Australia and China across the GFC," Tinbergen Institute Discussion Papers 13-009/III, Tinbergen Institute, revised 01 Feb 2013.
  • Handle: RePEc:tin:wpaper:20130009
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/13009.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Engle, Robert F & Ng, Victor K, 1993. "Time-Varying Volatility and the Dynamic Behavior of the Term Structure," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 25(3), pages 336-349, August.
    4. Bing Zhang & Xindan Li, 2008. "The asymmetric behaviour of stock returns and volatilities: evidence from Chinese stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 15(12), pages 959-962.
    5. Zheng Yi & Chen Heng & Wing-Keung Wong, 2009. "China’s Stock Market Integration with a Leading Power and a Close Neighbor," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 2(1), pages 1-37, December.
    6. Yilmaz, Kamil, 2010. "Return and volatility spillovers among the East Asian equity markets," Journal of Asian Economics, Elsevier, vol. 21(3), pages 304-313, June.
    7. Matteo Manera & Michael McAleer & Margherita Grasso, 2006. "Modelling time-varying conditional correlations in the volatility of Tapis oil spot and forward returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(7), pages 525-533.
    8. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    9. Gyu-Hyen Moon & Wei-Choun Yu, 2010. "Volatility Spillovers between the US and China Stock Markets: Structural Break Test with Symmetric and Asymmetric GARCH Approaches," Global Economic Review, Taylor & Francis Journals, vol. 39(2), pages 129-149.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    14. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    15. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(1), pages 232-261, February.
    16. Johansson, Anders C. & Ljungwall, Christer, 2009. "Spillover Effects Among the Greater China Stock Markets," World Development, Elsevier, vol. 37(4), pages 839-851, April.
    17. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    18. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1554-1583, December.
    19. Richard D. F. Harris & Evarist Stoja & Jon Tucker, 2007. "A simplified approach to modeling the co‐movement of asset returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(6), pages 575-598, June.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen, David E. & Amram, Ron & McAleer, Michael, 2013. "Volatility spillovers from the Chinese stock market to economic neighbours," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 238-257.
    2. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    3. Long, Ling & Tsui, Albert K. & Zhang, Zhaoyong, 2014. "Conditional heteroscedasticity with leverage effect in stock returns: Evidence from the Chinese stock market," Economic Modelling, Elsevier, vol. 37(C), pages 89-102.
    4. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, Open Access Journal, vol. 11(6), pages 1-1, June.
    5. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    6. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CIRJE F-Series CIRJE-F-640, CIRJE, Faculty of Economics, University of Tokyo.
    7. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Forecasting Volatility and Spillovers in Crude Oil Spot, Forward and Futures Markets," CIRJE F-Series CIRJE-F-641, CIRJE, Faculty of Economics, University of Tokyo.
    8. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    9. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    10. Abdul Hakim & Michael McAleer, 2009. "VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," CIRJE F-Series CIRJE-F-676, CIRJE, Faculty of Economics, University of Tokyo.
    11. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    12. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    13. Lanza, Alessandro & Manera, Matteo & McAleer, Michael, 2006. "Modeling dynamic conditional correlations in WTI oil forward and futures returns," Finance Research Letters, Elsevier, vol. 3(2), pages 114-132, June.
    14. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, Open Access Journal, vol. 12(8), pages 1-1, April.
    15. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(4), pages 1-1, September.
    16. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    17. Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2016. "How are VIX and Stock Index ETF Related?," Econometric Institute Research Papers EI2016-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    19. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2010. "Analyzing and Forecasting Volatility Spillovers and Asymmetries in Major Crude Oil Spot, Forward and Futures Markets," KIER Working Papers 717, Kyoto University, Institute of Economic Research.
    20. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.

    More about this item

    Keywords

    Volatility spillovers; Markov-switching GARCH; Cholesky-GARCH; Time-varying correlations;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20130009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900). General contact details of provider: http://edirc.repec.org/data/tinbenl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.