IDEAS home Printed from
   My bibliography  Save this article

Forecasting Stock Market Volatility with Regime-Switching GARCH Models


  • Marcucci Juri

    () (University of California, San Diego)


In this paper we compare a set of different standard GARCH models with a group of Markov Regime-Switching GARCH (MRS-GARCH) in terms of their ability to forecast the US stock market volatility at horizons that range from one day to one month. To take into account the excessive persistence usually found in GARCH models that implies too smooth and too high volatility forecasts, in the MRS-GARCH models all parameters switch between a low and a high volatility regime. Both gaussian and fat-tailed conditional distributions for the residuals are assumed, and the degrees of freedom can also be state-dependent to capture possible time-varying kurtosis. The forecasting performances of the competing models are evaluated both with statistical and risk-management loss functions. Under statistical losses, we use both tests of equal predictive ability of the Diebold-Mariano-type and test of superior predictive ability. Under risk-management losses, we use a two-step selection procedure where we first check which models pass the tests of correct unconditional or conditional coverage and then we compare the best models under two subjective VaR-based loss functions. The empirical analysis demonstrates that MRS-GARCH models do really outperform all standard GARCH models in forecasting volatility at horizons shorter than one week under both statistical and VaR-based risk-management loss functions. In particular, all tests reject the presence of a better model than the MRS-GARCH with normal innovations. However, at forecast horizons longer than one week, standard asymmetric GARCH models tend to be superior.

Suggested Citation

  • Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
  • Handle: RePEc:bpj:sndecm:v:9:y:2005:i:4:n:6

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:9:y:2005:i:4:n:6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.