IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Selection Criteria in Regime Switching Conditional Volatility Models

  • Thomas Chuffart


    (Aix-Marseille University (Aix Marseille School of Economics), CNRS & EHESS)

A large number of non linear conditional heteroskedastic models have been proposed in the literature and practitioners do not have always the tools to choose the correct specification. In this article, our main interest is to know if usual choice criteria lead them to choose the good specification in regime switching framework. We focus on two types of models: the Logistic Smooth Transition GARCH model and the Markov-Switching GARCH models. Thanks to simulation experiments, we highlight that information criteria and loss functions can lead practitioners to do a misspecification. Indeed, depending on the Data Generating Process used in the experiment, the choice of criteria to select a model is a difficult issue. We argue that if selection criteria lead to choose the wrong model, it’s rather due to the difficulty to estimate such models with Quasi Maximum Likelihood Estimation method (QMLE).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Aix-Marseille School of Economics, Marseille, France in its series AMSE Working Papers with number 1339.

in new window

Length: 20 pages
Date of creation: 14 Jul 2013
Date of revision: 14 Jul 2013
Handle: RePEc:aim:wpaimx:1339
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2008. "Asymmetric multivariate normal mixture GARCH," CFS Working Paper Series 2008/07, Center for Financial Studies (CFS).
  2. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
  3. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  4. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  7. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  8. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-16, July.
  9. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  10. Felix Chan & Michael McAleer & Marcelo C. Medeiros, 2010. "Structure and Asymptotic Theory for Nonlinear Models with GARCH Errors," Working Papers in Economics 10/79, University of Canterbury, Department of Economics and Finance.
  11. David Ardia, 2009. "Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, 03.
  12. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
  13. Novella Maugeri, 2014. "Some Pitfalls in Smooth Transition Models Estimation: A Monte Carlo Study," Computational Economics, Society for Computational Economics, vol. 44(3), pages 339-378, October.
  14. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  15. James D. Hamilton, 2010. "Nonlinearities and the Macroeconomic Effects of Oil Prices," NBER Working Papers 16186, National Bureau of Economic Research, Inc.
  16. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
  17. Celso Brunetti & Roberto S. Mariano & Chiara Scotti & Augustine H. H. Tan, 2007. "Markov switching GARCH models of currency turmoil in southeast Asia," International Finance Discussion Papers 889, Board of Governors of the Federal Reserve System (U.S.).
  18. BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen VK, . "Theory and inference for a Markov switching Garch model," CORE Discussion Papers RP 2303, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  19. Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
  20. Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
  21. Rockinger, M. & Jondeau, E., 2001. "Entropy Densities: with an Application to Autoregressive Conditional Skewness and Kurtosis," Working papers 79, Banque de France.
  22. Felix Chan & Michael McAleer, 2002. "Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 509-534.
  23. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
  24. Hu Liang & Shin Yongcheol, 2008. "Optimal Test for Markov Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-27, September.
  25. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  26. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aim:wpaimx:1339. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Yves Doazan)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.