IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence

  • Felix Chan

    (Department of Economics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia)

  • Michael McAleer

    (Department of Economics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia)

Theoretical and practical interest in non-linear time series models, particularly regime switching models, have increased substantially in recent years. Given the abundant research activity in analysing time-varying volatility through Generalized Autoregressive Conditional Heteroscedasticity (GARCH) processes (see Engle, 1982; Bollerslev, 1986), it is important to analyse regime switching models with GARCH errors. A popular specification in this class is the (stationary) Smooth Transition Autoregressive-GARCH (STAR-GARCH) model. Little is presently known about the structure of the model, or the consistency, asymptotic normality and finite sample properties of the estimators. The paper develops the structural and statistical properties of the STAR-GARCH model, and investigates the finite sample properties of maximum likelihood estimation (MLE) of STAR and STAR-GARCH models through numerical simulation. The effects of fixing the threshold value and|or the transition rate for the STAR model, misspecification of the conditional mean and the transition function of the STAR-GARCH model, and the finite sample properties of the MLE for the STAR-GARCH model, are also examined. These numerical results are used as a guide in empirical research, with an application to Standard and Poor's Composite 500 Index returns for alternative STAR-GARCH models. Copyright © 2002 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1002/jae.686
File Function: Link to full text; subscription required
Download Restriction: no

File URL: http://qed.econ.queensu.ca:80/jae/2002-v17.5/
File Function: Supporting data files and programs
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

Volume (Year): 17 (2002)
Issue (Month): 5 ()
Pages: 509-534

as
in new window

Handle: RePEc:jae:japmet:v:17:y:2002:i:5:p:509-534
Contact details of provider: Web page: http://www.interscience.wiley.com/jpages/0883-7252/

Order Information: Web: http://www3.interscience.wiley.com/jcatalog/subscribe.jsp?issn=0883-7252 Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lundbergh, Stefan & Teräsvirta, Timo, 2000. "Forecasting with smooth transition autoregressive models," SSE/EFI Working Paper Series in Economics and Finance 390, Stockholm School of Economics.
  2. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
  3. He, Changli & Ter svirta, Timo, 1999. "FOURTH MOMENT STRUCTURE OF THE GARCH(p,q) PROCESS," Econometric Theory, Cambridge University Press, vol. 15(06), pages 824-846, December.
  4. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
  5. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
  6. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  7. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
  8. Shiqing Ling & Michael McAleer, 2001. "Asymptotic Theory for a Vector ARMA-GARCH Model," ISER Discussion Paper 0549, Institute of Social and Economic Research, Osaka University.
  9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, June.
  10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  11. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
  12. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  13. Brooks, Chris & Burke, Simon P. & Persand, Gita, 2001. "Benchmarks and the accuracy of GARCH model estimation," International Journal of Forecasting, Elsevier, vol. 17(1), pages 45-56.
  14. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665 National Bureau of Economic Research, Inc.
  15. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
  16. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
  17. Mak, T. K. & Wong, H. & Li, W. K., 1997. "Estimation of nonlinear time series with conditional heteroscedastic variances by iteratively weighted least squares," Computational Statistics & Data Analysis, Elsevier, vol. 24(2), pages 169-178, April.
  18. Franses, Ph.H.B.F. & Neele, J. & van Dijk, D.J.C., 1998. "Forecasting volatility with switching persistence GARCH models," Econometric Institute Research Papers EI 9819, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:17:y:2002:i:5:p:509-534. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.