IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/17414.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations in R

Author

Listed:
  • Ardia, David

Abstract

This paper presents the R package bayesGARCH which provides functions for the Bayesian estimation of the parsimonious but effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The usage of the package is shown in an empirical application to exchange rate log-returns.

Suggested Citation

  • Ardia, David, 2009. "Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations in R," MPRA Paper 17414, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:17414
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/17414/1/MPRA_paper_17414.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/27853/3/MPRA_paper_27853.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/30122/2/MPRA_paper_30122.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Ardia, 2008. "Financial Risk Management with Bayesian Estimation of GARCH Models," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-78657-3, December.
    2. Deschamps, Philippe J., 2006. "A flexible prior distribution for Markov switching autoregressions with Student-t errors," Journal of Econometrics, Elsevier, vol. 133(1), pages 153-190, July.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    2. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    3. David Ardia & Lennart F. Hoogerheide, 2010. "Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations," Tinbergen Institute Discussion Papers 10-045/4, Tinbergen Institute.
    4. Yanlin Shi & Lingbing Feng & Tong Fu, 2020. "Markov Regime-Switching in-Mean Model with Tempered Stable Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1275-1299, April.
    5. repec:ipg:wpaper:2014-500 is not listed on IDEAS
    6. Shi, Yanlin & Ho, Kin-Yip, 2015. "Modeling high-frequency volatility with three-state FIGARCH models," Economic Modelling, Elsevier, vol. 51(C), pages 473-483.
    7. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    8. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, vol. 3(2), pages 1-28, May.
    9. Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
    10. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    11. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    12. Kris Boudt & Jon Danielsson & Siem Jan Koopman & Andre Lucas, 2012. "Regime switches in the volatility and correlation of financial institutions," Working Paper Research 227, National Bank of Belgium.
    13. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    14. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    15. Morgan Kelly & Cormac Ó Gráda, 2012. "Change Points and Temporal Dependence in Reconstructions of Annual Temperature: Did Europe Experience a Little Ice Age?," Working Papers 201210, School of Economics, University College Dublin.
    16. Toktam Valizadeh & Saeid Rezakhah & Ferdous Mohammadi Basatini, 2021. "On time‐varying amplitude HGARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2538-2547, April.
    17. N. Alemohammad & S. Rezakhah & S. H. Alizadeh, 2020. "Markov switching asymmetric GARCH model: stability and forecasting," Statistical Papers, Springer, vol. 61(3), pages 1309-1333, June.
    18. Marcel Aloy & Gilles de Truchis & Gilles Dufrénot & Benjamin Keddad, 2013. "Shift-Volatility Transmission in East Asian Equity Markets," Working Papers halshs-00935364, HAL.
    19. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    20. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    21. Haas, Markus & Liu, Ji-Chun, 2015. "Theory for a Multivariate Markov--switching GARCH Model with an Application to Stock Markets," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112855, Verein für Socialpolitik / German Economic Association.
    22. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    23. BenSaïda, Ahmed, 2015. "The frequency of regime switching in financial market volatility," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 63-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Ardia & Lennart F. Hoogerheide, 2010. "Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations," Tinbergen Institute Discussion Papers 10-045/4, Tinbergen Institute.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    4. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    5. Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
    6. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    7. Abdessamad Ouchen, 2022. "Is the ESG portfolio less turbulent than a market benchmark portfolio?," Risk Management, Palgrave Macmillan, vol. 24(1), pages 1-33, March.
    8. Amare Wubishet Ayele & Emmanuel Gabreyohannes & Yohannes Yebabe Tesfay, 2017. "Macroeconomic Determinants of Volatility for the Gold Price in Ethiopia: The Application of GARCH and EWMA Volatility Models," Global Business Review, International Management Institute, vol. 18(2), pages 308-326, April.
    9. David Ardia, 2009. "Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
    10. Abdellah Tahiri & Brahim Benaid & Hassane Bouzahir & Naushad Ali Mamode Khan, 2021. "Testing for the Number of Regimes in Financial Time Series GARCH Volatility," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 9(2), pages 82-94.
    11. Cano Berlanga, Sebastian & Giménez Gómez, José M. (José Manuel), 2016. "On Chinese stock markets: How have they evolved along time?," Working Papers 2072/267085, Universitat Rovira i Virgili, Department of Economics.
    12. Marín Díazaraque, Juan Miguel & Rodríguez Bernal, M. T. & Romero, Eva, 2013. "Data cloning estimation of GARCH and COGARCH models," DES - Working Papers. Statistics and Econometrics. WS ws132723, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2021. "A Markov-Switching VSTOXX Trading Algorithm for Enhancing EUR Stock Portfolio Performance," Mathematics, MDPI, vol. 9(9), pages 1-28, May.
    14. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2019. "A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading," Energies, MDPI, vol. 13(1), pages 1-24, December.
    15. N. Alemohammad & S. Rezakhah & S. H. Alizadeh, 2020. "Markov switching asymmetric GARCH model: stability and forecasting," Statistical Papers, Springer, vol. 61(3), pages 1309-1333, June.
    16. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    17. Oscar V. De la Torre-Torres & José Álvarez-García & María de la Cruz del Río-Rama, 2024. "An EM/MCMC Markov-Switching GARCH Behavioral Algorithm for Random-Length Lumber Futures Trading," Mathematics, MDPI, vol. 12(3), pages 1-21, February.
    18. Sebastián Cano-Berlanga & José-Manuel Giménez-Gómez, 2018. "On Chinese stock markets: How have they evolved over time?," Annals of Operations Research, Springer, vol. 266(1), pages 499-510, July.
    19. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    20. Gordon V. Chavez, 2019. "Dynamic tail inference with log-Laplace volatility," Papers 1901.02419, arXiv.org, revised Jul 2019.

    More about this item

    Keywords

    GARCH; Bayesian; MCMC; Student-t; R software;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.