IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i6p3027-3046.html
   My bibliography  Save this article

Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference

Author

Listed:
  • Francq, Christian
  • ZakoI¨an, Jean-Michel

Abstract

A procedure is proposed for computing the autocovariances and the ARMA representations of the squares, and higher-order powers, of Markov-switching GARCH models. It is shown that many interesting subclasses of the general model can be discriminated in view of their autocovariance structures. Explicit derivation of the autocovariances allows for parameter estimation in the general model, via a GMM procedure. It can also be used to determine how many ARMA representations are needed to identify the Markov-switching GARCH parameters. A Monte Carlo study and an application to the Standard & Poor index are presented.

Suggested Citation

  • Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3027-3046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00298-8
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    2. Christian Francq & Michel Roussignol & Jean-Michel Zakoian, 1998. "Conditional heteroskedasticity driven by hidden Markov chains," SFB 373 Discussion Papers 1998,86, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    4. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    5. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    6. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
    7. Baum, Christopher F & Karasulu, Meral, 1998. "Modelling Federal Reserve Discount Policy," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 53-70, April.
    8. Francq, Christian & ZakoI¨an, Jean-Michel, 2005. "The L2-structures of standard and switching-regime GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1557-1582, September.
    9. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    10. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    13. Fong, P.W. & Li, W.K. & An, Hong-Zhi, 2006. "A simple multivariate ARCH model specified by random coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1779-1802, December.
    14. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    15. Guedon, Yann, 2007. "Exploring the state sequence space for hidden Markov and semi-Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2379-2409, February.
    16. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    2. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    3. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    4. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    5. Carol Alexander & Emese Lazar, 2009. "Modelling Regime-Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    6. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, Open Access Journal, vol. 3(2), pages 1-28, May.
    7. Pappas, Vasileios & Ingham, Hilary & Izzeldin, Marwan & Steele, Gerry, 2016. "Will the crisis “tear us apart”? Evidence from the EU," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 346-360.
    8. Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
    9. Pérez, Ana & Ruiz, Esther & Veiga, Helena, 2009. "A note on the properties of power-transformed returns in long-memory stochastic volatility models with leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3593-3600, August.
    10. DUFAYS, Arnaud, 2012. "Infinite-state Markov-switching for dynamic volatility and correlation models," CORE Discussion Papers 2012043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3027-3046. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.