IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Marginal likelihood for Markov-switching and change-point GARCH models

  • BAUWENS, Luc

    ()

    (Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium)

  • DUFAYS, Arnaud

    ()

    (Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium)

  • ROMBOUTS, Jeroen V.K.

    ()

    (HEC Montréal, CIRANO, CIRPEE and CORE)

GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved issue is the computation of their marginal likelihood, which is essential for determining the number of regimes or change-points. We solve the problem by using particle MCMC, a technique proposed by Andrieu, Doucet, and Holenstein (2010). We examine the performance of this new method on simulated data, and we illustrate its use on several return series.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://uclouvain.be/cps/ucl/doc/core/documents/coredp2011_13web.pdf
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2011013.

as
in new window

Length:
Date of creation: 07 Dec 2011
Date of revision:
Handle: RePEc:cor:louvco:2011013
Contact details of provider: Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Web page: http://www.uclouvain.be/core
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  2. Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Working Paper Series 11_09, The Rimini Centre for Economic Analysis, revised Jan 2009.
  3. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  4. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
  5. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2007. "Theory and Inference for a Markov-Switching GARCH Model," Cahiers de recherche 0733, CIRPEE.
  6. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
  7. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
  8. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
  9. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
  10. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
  11. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342.
  12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  13. Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, 06.
  14. Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez, 2006. "Estimating Macroeconomic Models: A Likelihood Approach," NBER Technical Working Papers 0321, National Bureau of Economic Research, Inc.
  15. Thomas Flury & Neil Shephard, 2008. "Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models," OFRC Working Papers Series 2008fe32, Oxford Financial Research Centre.
  16. DUFAYS, Arnaud, 2012. "Infinite-state Markov-switching for dynamic volatility and correlation models," CORE Discussion Papers 2012043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  17. repec:dgr:uvatin:20100059 is not listed on IDEAS
  18. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2002. "Mixed normal conditional heteroskedasticity," CFS Working Paper Series 2002/10, Center for Financial Studies (CFS).
  19. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  20. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
  21. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  22. Winfried Pohlmeier & Luc Bauwens & David Veredas, 2007. "High frequency financial econometrics. Recent developments," ULB Institutional Repository 2013/136223, ULB -- Universite Libre de Bruxelles.
  23. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
  24. repec:cup:cbooks:9780521681599 is not listed on IDEAS
  25. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  26. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  27. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  28. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
  29. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
  30. Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
  31. Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
  32. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
  33. repec:ulb:ulbeco:2013/6500 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2011013. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.