IDEAS home Printed from https://ideas.repec.org/p/mib/wpaper/498.html

Is climate change time-reversible?

Author

Listed:
  • Francesco Giancaterini
  • Alain Hecq
  • Claudio Morana

Abstract

This paper proposes strategies to detect time reversibility in stationary stochastic processes by using the properties of mixed causal and noncausal models. It shows that they can also be used for non-stationary processes when the trend component is computed with the Hodrick-Prescott filter rendering a time-reversible closed-form solution. This paper also links the concept of an environmental tipping point to the statistical property of time irreversibility and assesses fourteen climate indicators. We find evidence of time irreversibility in GHG emissions, global temperature, global sea levels, sea ice area, and some natural oscillation indices. While not conclusive, our findings urge the implementation of correction policies to avoid the worst consequences of climate change and not miss the opportunity window, which might still be available, despite closing quickly.

Suggested Citation

  • Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is climate change time-reversible?," Working Papers 498, University of Milano-Bicocca, Department of Economics, revised Nov 2022.
  • Handle: RePEc:mib:wpaper:498
    as

    Download full text from publisher

    File URL: http://repec.dems.unimib.it/repec/pdf/mibwpaper498.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    2. Gianluca Cubadda & Alain Hecq & Elisa Voisin, 2023. "Detecting Common Bubbles in Multivariate Mixed Causal–Noncausal Models," Econometrics, MDPI, vol. 11(1), pages 1-16, March.
    3. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    4. Francesco Giancaterini & Alain Hecq & Joann Jasiak & Aryan Manafi Neyazi, 2025. "Bubble Detection with Application to Green Bubbles: A Noncausal Approach," Papers 2505.14911, arXiv.org.
    5. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mib:wpaper:498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matteo Pelagatti (email available below). General contact details of provider: https://edirc.repec.org/data/dpmibit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.