IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.05952.html
   My bibliography  Save this paper

Identification of Noncausal Models by Quantile Autoregressions

Author

Listed:
  • Alain Hecq
  • Li Sun

Abstract

We propose a model selection criterion to detect purely causal from purely noncausal models in the framework of quantile autoregressions (QAR). We also present asymptotics for the i.i.d. case with regularly varying distributed innovations in QAR. This new modelling perspective is appealing for investigating the presence of bubbles in economic and financial time series, and is an alternative to approximate maximum likelihood methods. We illustrate our analysis using hyperinflation episodes in Latin American countries.

Suggested Citation

  • Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
  • Handle: RePEc:arx:papers:1904.05952
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.05952
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alain Hecq & Lenard Lieb & Sean Telg, 2016. "Identification of Mixed Causal-Noncausal Models in Finite Samples," Annals of Economics and Statistics, GENES, issue 123-124, pages 307-331.
    2. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    3. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    4. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    5. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    6. Adam, M C & Szafarz, A, 1992. "Speculative Bubbles and Financial Markets," Oxford Economic Papers, Oxford University Press, vol. 44(4), pages 626-640, October.
    7. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    8. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    9. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    10. Herce, Miguel A., 1996. "Asymptotic Theory of LAD Estimation in a Unit Root Process with Finite Variance Errors," Econometric Theory, Cambridge University Press, vol. 12(1), pages 129-153, March.
    11. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2011. "Non‐Fundamentalness in Structural Econometric Models: A Review," International Statistical Review, International Statistical Institute, vol. 79(1), pages 16-47, April.
    12. Laurence Broze & Ariane Szafarz, 1985. "Solutions des modèles linéaires à anticipations rationnelles," ULB Institutional Repository 2013/679, ULB -- Universite Libre de Bruxelles.
    13. Knight, Keith, 1991. "Limit Theory for M-Estimates in an Integrated Infinite Variance," Econometric Theory, Cambridge University Press, vol. 7(2), pages 200-212, June.
    14. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    15. Geert Dhaene & Christian Gourieroux & Olivier Scaillet, 1998. "Instrumental Models and Indirect Encompassing," Econometrica, Econometric Society, vol. 66(3), pages 673-688, May.
    16. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    17. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    18. Christian Gouriéroux & Joann Jasiak, 2015. "Semi-Parametric Estimation of Noncausal Vector Autoregression," Working Papers 2015-02, Center for Research in Economics and Statistics.
    19. Francq, Christian & Zakoïan, Jean-Michel, 2007. "HAC estimation and strong linearity testing in weak ARMA models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 114-144, January.
    20. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
    2. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    2. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    3. Hecq Alain & Sun Li, 2021. "Selecting between causal and noncausal models with quantile autoregressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(5), pages 393-416, December.
    4. Gianluca Cubadda & Alain Hecq & Sean Telg, 2019. "Detecting Co‐Movements in Non‐Causal Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 697-715, June.
    5. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    6. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    7. Hecq, Alain & Issler, João Victor & Voisin, Elisa, 2024. "A short term credibility index for central banks under inflation targeting: An application to Brazil," Journal of International Money and Finance, Elsevier, vol. 143(C).
    8. Gourieroux, Christian & Jasiak, Joann, 2018. "Misspecification of noncausal order in autoregressive processes," Journal of Econometrics, Elsevier, vol. 205(1), pages 226-248.
    9. Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org, revised Nov 2022.
    10. F. Blasques & S.J. Koopman & G. Mingoli & S. Telg, 2024. "A Novel Test for the Presence of Local Explosive Dynamics," Tinbergen Institute Discussion Papers 24-036/III, Tinbergen Institute.
    11. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    12. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    13. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    14. Weifeng Jin, 2023. "Quantile Autoregression-based Non-causality Testing," Papers 2301.02937, arXiv.org.
    15. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    16. Kramkov, Viacheslav & Maksimov, Andrey, 2020. "Loan market markups and noncausal autoregressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 48-69.
    17. Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
    18. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    19. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    20. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.05952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.