IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0406.html
   My bibliography  Save this article

Loan market markups and noncausal autoregressions

Author

Listed:
  • Kramkov, Viacheslav

    (Volgo-Vyatka Main Branch of Bank of Russia; National Research University Higher School of Economics (HSE University), Nizhny Novgorod, Russian Federation;)

  • Maksimov, Andrey

    (National Research University Higher School of Economics (HSE University), Nizhny Novgorod, Russian Federation)

Abstract

The dynamics of different maturity loans interest rates is studied. Identification strategy that explicitly allows to introduce the impact of future interest rates expectations and to estimate their significance is used. It is shown that for Russian banking sector in 2010–2020 expectations about future interest rates path have significant but modest impact on current loan rates. Main results are proven to be robust with respect to interest rates stationarity assumption. Estimated empirical moments may be used in macroeconomic model calibration.

Suggested Citation

  • Kramkov, Viacheslav & Maksimov, Andrey, 2020. "Loan market markups and noncausal autoregressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 48-69.
  • Handle: RePEc:ris:apltrx:0406
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2020_60_048-069.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alain Hecq & Lenard Lieb & Sean Telg, 2016. "Identification of Mixed Causal-Noncausal Models in Finite Samples," Annals of Economics and Statistics, GENES, issue 123-124, pages 307-331.
    2. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    3. Irina Khvostova Author-Email: ikhvostova@hse.ru & Anna Novak Author-Email: aenovak@hse.ru, 2016. "The Euler Equation with Habits and Measurement Errors: Estimates on Russian Micro Data," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(4), pages 395-409, September.
    4. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    5. Ciccarone, Giuseppe & Giuli, Francesco & Liberati, Danilo, 2014. "Incomplete interest rate pass-through under credit and labor market frictions," Economic Modelling, Elsevier, vol. 36(C), pages 645-657.
    6. Christian Gouriéroux & Jean-Michel Zakoïan, 2017. "Local explosion modelling by non-causal process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 737-756, June.
    7. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    8. Alain Hecq & Joao Victor Issler & Sean Telg, 2020. "Mixed causal–noncausal autoregressions with exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 328-343, April.
    9. Gourieroux, Christian & Jasiak, Joann, 2017. "Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation," Journal of Econometrics, Elsevier, vol. 200(1), pages 118-134.
    10. Rotemberg, Julio J, 1982. "Sticky Prices in the United States," Journal of Political Economy, University of Chicago Press, vol. 90(6), pages 1187-1211, December.
    11. Andrea Gerali & Stefano Neri & Luca Sessa & Federico M. Signoretti, 2010. "Credit and Banking in a DSGE Model of the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(s1), pages 107-141, September.
    12. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    13. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    14. Stephen Rousseas, 1985. "A Markup Theory of Bank Loan Rates," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 8(1), pages 135-144, September.
    15. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    16. Teruyoshi Kobayashi, 2008. "Incomplete Interest Rate Pass-Through and Optimal Monetary Policy," International Journal of Central Banking, International Journal of Central Banking, vol. 4(3), pages 77-118, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    2. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    3. Gianluca Cubadda & Alain Hecq & Sean Telg, 2019. "Detecting Co‐Movements in Non‐Causal Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 697-715, June.
    4. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    5. Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org.
    6. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    7. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    8. Alain Hecq & Elisa Voisin, 2019. "Predicting crashes in oil prices during the COVID-19 pandemic with mixed causal-noncausal models," Papers 1911.10916, arXiv.org, revised May 2022.
    9. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    10. Hecq Alain & Sun Li, 2021. "Selecting between causal and noncausal models with quantile autoregressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(5), pages 393-416, December.
    11. repec:csg:ajrcwp:06 is not listed on IDEAS
    12. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    13. F. Verona & M. M. F. Martins & I. Drumond, 2013. "(Un)anticipated Monetary Policy in a DSGE Model with a Shadow Banking System," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 78-124, September.
    14. Nyberg, Henri & Saikkonen, Pentti, 2014. "Forecasting with a noncausal VAR model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
    15. Fujiwara, Ippei & Teranishi, Yuki, 2017. "Financial frictions and policy cooperation: A case with monopolistic banking and staggered loan contracts," Journal of International Economics, Elsevier, vol. 104(C), pages 19-43.
    16. Ippei Fujiwara & Yuki Teranishi, 2009. "Financial Stability in Open Economies," IMES Discussion Paper Series 09-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    17. Kilponen, Juha & Orjasniemi, Seppo & Ripatti, Antti & Verona, Fabio, 2016. "The Aino 2.0 model," Research Discussion Papers 16/2016, Bank of Finland.
    18. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2012. "Testing for predictability in a noninvertible ARMA model," MPRA Paper 37151, University Library of Munich, Germany.
    19. Giacomo Carboni & Christoffer Kok & Matthieu Darrak Paries, 2014. "Exploring the Nexus Between Macro-Prudential Policies and Monetary Policy Measures: Evidence from an Estimated DSGE Model for the Euro Area," Working Papers BFI_2013-005, Becker Friedman Institute for Research In Economics.
    20. Silvo, Aino & Verona, Fabio, 2020. "The Aino 3.0 model," Research Discussion Papers 9/2020, Bank of Finland.
    21. Fujiwara, Ippei & Teranishi, Yuki, 2011. "Real exchange rate dynamics revisited: A case with financial market imperfections," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1562-1589.

    More about this item

    Keywords

    interest rates pass through; rational expectations; noncausal autoregression; time series; identification in macroeconomics.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0406. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.