IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/32943.html
   My bibliography  Save this paper

Noncausal autoregressions for economic time series

Author

Listed:
  • Lanne, Markku
  • Saikkonen, Pentti

Abstract

This paper is concerned with univariate noncausal autoregressive models and their potential usefulness in economic applications. In these models, future errors are predictable, indicating that they can be used to empirically approach rational expectations models with nonfundamental solutions. In the previous theoretical literature, nonfundamental solutions have typically been represented by noninvertible moving average models. However, noncausal autoregressive and noninvertible moving average models closely approximate each other, and therefore,the former provide a viable and practically convenient alternative. We show how the parameters of a noncausal autoregressive model can be estimated by the method of maximum likelihood and derive related test procedures. Because noncausal autoregressive models cannot be distinguished from conventional causal autoregressive models by second order properties or Gaussian likelihood, a model selection procedure is proposed. As an empirical application, we consider modeling the U.S. inflation which, according to our results, exhibits purely forward-looking dynamics.

Suggested Citation

  • Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal autoregressions for economic time series," MPRA Paper 32943, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:32943
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/32943/1/MPRA_paper_32943.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabio Canova, 2007. "Bayesian Time Series and DSGE Models, from Methods for Applied Macroeconomic Research," Introductory Chapters,in: Methods for Applied Macroeconomic Research Princeton University Press.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    4. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time-series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    7. Stephen G. Cecchetti & Guy Debelle, 2006. "Has the inflation process changed?," Economic Policy, CEPR;CES;MSH, vol. 21(46), pages 311-352, April.
    8. Fabio Canova, 2007. "DSGE Models, Solutions, and Approximations, from Methods for Applied Macroeconomic Research," Introductory Chapters,in: Methods for Applied Macroeconomic Research Princeton University Press.
    9. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    10. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    11. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    12. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(03), pages 447-481, June.
    13. Kenneth Kasa & Todd B. Walker & Charles H. Whiteman, 2006. "Asset Prices in a Time Series Model with Perpetually Disparately Informed, Competitive Traders," Caepr Working Papers 2006-010, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
    14. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Noncausal autoregression; expectations; inflation persistence;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:32943. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.