Optimal Forecasting of Noncausal Autoregressive Time Series
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
References listed on IDEAS
- James H. Stock & Mark W. Watson, 2008.
"Phillips curve inflation forecasts,"
Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
- James H. Stock & Mark W. Watson, 2008. "Phillips Curve Inflation Forecasts," NBER Working Papers 14322, National Bureau of Economic Research, Inc.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
- Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
- Lanne, Markku & Luoto, Jani, 2012.
"Has US inflation really become harder to forecast?,"
Economics Letters, Elsevier, vol. 115(3), pages 383-386.
- Lanne, Markku & Luoto, Jani, 2010. "Has U.S. Inflation Really Become Harder to Forecast?," MPRA Paper 29992, University Library of Munich, Germany.
- Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 26(Q I), pages 32-44.
- repec:zbw:bofrdp:2009_018 is not listed on IDEAS
- Lanne, Markku & Saikkonen, Pentti, 2013.
"Noncausal Vector Autoregression,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
- Lanne, Markku & Saikkonen, Pentti, 2009. "Noncausal vector autoregression," Bank of Finland Research Discussion Papers 18/2009, Bank of Finland.
- Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal Vector Autoregression," MPRA Paper 23717, University Library of Munich, Germany.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Lanne Markku & Saikkonen Pentti, 2011.
"Noncausal Autoregressions for Economic Time Series,"
Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
- Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal autoregressions for economic time series," MPRA Paper 32943, University Library of Munich, Germany.
- Clements, Michael P & Smith, Jeremy, 1999.
"A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
- Clements, Michael P & Smith, Jeremy, 1996. "A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models," The Warwick Economics Research Paper Series (TWERPS) 464, University of Warwick, Department of Economics.
- Clementrs, Michael P. & Smith, Jeremy, 1997. "A Monte Carlo study of the forecasting performance of empirical SETAR models," Economic Research Papers 268734, University of Warwick - Department of Economics.
- Lanne, Markku & Saikkonen, Pentti, 2008.
"Modeling Expectations with Noncausal Autoregressions,"
MPRA Paper
8411, University Library of Munich, Germany.
- Markku Lanne & Pentti Saikkonen, 2008. "Modeling Expectations with Noncausal Autoregressions," Economics Working Papers ECO2008/20, European University Institute.
- Corradi, Valentina & Swanson, Norman R., 2006.
"Predictive Density Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284,
Elsevier.
- Valentina Corradi & Norman Swanson, 2004. "Predictive Density Evaluation," Departmental Working Papers 200419, Rutgers University, Department of Economics.
- Jian Huang & Yudi Pawitan, 2000. "Quasi‐likelihood Estimation of Non‐invertible Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 689-702, December.
- Lanne, Markku & Nyberg, Henri & Saarinen, Erkka, 2011. "Forecasting U.S. Macroeconomic and Financial Time Series with Noncausal and Causal AR Models: A Comparison," MPRA Paper 30254, University Library of Munich, Germany.
- Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lanne Markku, 2015.
"Noncausality and inflation persistence,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
- Markku Lanne, 2013. "Noncausality and Inflation Persistence," Discussion Papers of DIW Berlin 1286, DIW Berlin, German Institute for Economic Research.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020.
"Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
- Frédérique BEC & Heino BOHN NIELSEN & Sarra SAÏDI, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Working Papers 2019-09, Center for Research in Economics and Statistics.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing [Modèles auto-régressifs non-causaux mixtes: Problèmes de bimodalité pour l'estimation et le test de r," Working Papers hal-02175760, HAL.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," THEMA Working Papers 2019-07, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
- Lanne Markku & Saikkonen Pentti, 2011.
"Noncausal Autoregressions for Economic Time Series,"
Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
- Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal autoregressions for economic time series," MPRA Paper 32943, University Library of Munich, Germany.
- Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
- Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
- repec:zbw:bofrdp:2013_026 is not listed on IDEAS
- Nyberg, Henri & Saikkonen, Pentti, 2014.
"Forecasting with a noncausal VAR model,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
- Nyberg, Henri & Saikkonen, Pentti, 2012. "Forecasting with a noncausal VAR model," Bank of Finland Research Discussion Papers 33/2012, Bank of Finland.
- Pentti Saikkonen & Rickard Sandberg, 2016.
"Testing for a Unit Root in Noncausal Autoregressive Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
- Saikkonen, Pentti & Sandberg, Rickard, 2013. "Testing for a unit root in noncausal autoregressive models," Research Discussion Papers 26/2013, Bank of Finland.
- Giancaterini, Francesco & Hecq, Alain, 2025.
"Inference in mixed causal and noncausal models with generalized Student’s t-distributions,"
Econometrics and Statistics, Elsevier, vol. 33(C), pages 1-12.
- Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org, revised Nov 2022.
- Pentti Saikkonen & Rickard Sandberg, 2016.
"Testing for a Unit Root in Noncausal Autoregressive Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
- Saikkonen, Pentti & Sandberg, Rickard, 2013. "Testing for a unit root in noncausal autoregressive models," Bank of Finland Research Discussion Papers 26/2013, Bank of Finland.
- Zanetti Chini, Emilio, 2018.
"Forecasting dynamically asymmetric fluctuations of the U.S. business cycle,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
- Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," DEM Working Papers Series 156, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," CREATES Research Papers 2018-13, Department of Economics and Business Economics, Aarhus University.
- Clark, Todd & McCracken, Michael, 2013.
"Advances in Forecast Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201,
Elsevier.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers (Old Series) 1120, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers 2011-025, Federal Reserve Bank of St. Louis.
- Norman Swanson & Nii Ayi Armah, 2006.
"Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output,"
Departmental Working Papers
200619, Rutgers University, Department of Economics.
- Norman R. Swanson & Nii Ayi Armah, 2011. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 201103, Rutgers University, Department of Economics.
- Lanne, Markku & Saikkonen, Pentti, 2013.
"Noncausal Vector Autoregression,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
- Lanne, Markku & Saikkonen, Pentti, 2009. "Noncausal vector autoregression," Bank of Finland Research Discussion Papers 18/2009, Bank of Finland.
- Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal Vector Autoregression," MPRA Paper 23717, University Library of Munich, Germany.
- Gourieroux, Christian & Jasiak, Joann, 2017. "Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation," Journal of Econometrics, Elsevier, vol. 200(1), pages 118-134.
- Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017.
"Evaluation of exchange rate point and density forecasts: An application to Brazil,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
- Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2016. "Evaluation of Exchange Rate Point and Density Forecasts: an application to Brazil," Working Papers Series 446, Central Bank of Brazil, Research Department.
- Swanson, Norman R. & Urbach, Richard, 2015.
"Prediction and simulation using simple models characterized by nonstationarity and seasonality,"
International Review of Economics & Finance, Elsevier, vol. 40(C), pages 312-323.
- Norman Swanson & Richard Urbach, 2013. "Prediction and Simulation Using Simple Models Characterized by Nonstationarity and Seasonality," Departmental Working Papers 201323, Rutgers University, Department of Economics.
- Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2017. "Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 143-163, October.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Alain Hecq & Joao Victor Issler & Sean Telg, 2020.
"Mixed causal–noncausal autoregressions with exogenous regressors,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 328-343, April.
- Hecq, Alain & Issler, João Victor & Telg, Sean, 2019. "Mixed causal-noncausal autoregressions with exogenous regressors," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 810, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
More about this item
Keywords
Noncausal autoregression; density forecast; inflation;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CBA-2010-07-17 (Central Banking)
- NEP-ECM-2010-07-17 (Econometrics)
- NEP-ETS-2010-07-17 (Econometric Time Series)
- NEP-FOR-2010-07-17 (Forecasting)
- NEP-ORE-2010-07-17 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:23648. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.