IDEAS home Printed from https://ideas.repec.org/p/zbw/bofrdp/rdp2012_033.html

Forecasting with a noncausal VAR model

Author

Listed:
  • Nyberg, Henri
  • Saikkonen, Pentti

Abstract

We propose simulation-based forecasting methods for the noncausal vector autoregressive model proposed by Lanne and Saikkonen (2012). Simulation or numerical methods are required because the prediction problem is generally nonlinear and, therefore, its analytical solution is not available. It turns out that different special cases of the model call for different simulation procedures. Simulation experiments demonstrate that gains in forecasting accuracy are achieved by using the correct noncausal VAR model instead of its conventional causal counterpart. In an empirical application, a noncausal VAR model comprised of U.S. inflation and marginal cost turns out superior to the bestfitting conventional causal VAR model in forecasting inflation.

Suggested Citation

  • Nyberg, Henri & Saikkonen, Pentti, 2012. "Forecasting with a noncausal VAR model," Bank of Finland Research Discussion Papers 33/2012, Bank of Finland.
  • Handle: RePEc:zbw:bofrdp:rdp2012_033
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/212236/1/bof-rdp2012-033.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    3. Pagnottoni, Paolo & Spelta, Alessandro, 2023. "The motifs of risk transmission in multivariate time series: Application to commodity prices," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    4. Chun Deng & Jie-Fang Dong, 2016. "Coal Consumption Reduction in Shandong Province: A Dynamic Vector Autoregression Model," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    5. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    6. Markku Lanne & Henri Nyberg, 2015. "Nonlinear dynamic interrelationships between real activity and stock returns," CREATES Research Papers 2015-36, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    8. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    9. Gianluca Cubadda & Francesco Giancaterini & Stefano Grassi, 2025. "Sequential Monte Carlo for Noncausal Processes," Papers 2501.03945, arXiv.org.
    10. Giusto Andrea & İşcan Talan B., 2018. "The Rescaled VAR Model with an Application to Mixed-Frequency Macroeconomic Forecasting," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(4), pages 1-16, September.
    11. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    12. Gerui Li & Yalin Lei & Jianping Ge & Sanmang Wu, 2017. "The Empirical Relationship between Mining Industry Development and Environmental Pollution in China," IJERPH, MDPI, vol. 14(3), pages 1-20, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bofrdp:rdp2012_033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.