IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Noncausality and Inflation Persistence

  • Markku Lanne

We use noncausal autoregressions to examine the persistence properties of quarterly U.S. consumer price inflation from 1970:1.2012:2. These nonlinear models capture the autocorrelation structure of the inflation series as accurately as their conventional causal counterparts, but they allow for persistence to depend on the size and sign of shocks to inflation as well as the inflation rate. Inflation persistence has decreased since the early 1980.s, after which persistence is also greater following small and negative shocks than large and positive ones. At high levels of inflation, shocks are absorbed more slowly before the early 1980.s and faster thereafter compared to low levels of inflation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.417856.de/dp1286.pdf
Download Restriction: no

Paper provided by DIW Berlin, German Institute for Economic Research in its series Discussion Papers of DIW Berlin with number 1286.

as
in new window

Length: 27 p.
Date of creation: 2013
Handle: RePEc:diw:diwwpp:dp1286
Contact details of provider: Postal:
Mohrenstraße 58, D-10117 Berlin

Phone: xx49-30-89789-0
Fax: xx49-30-89789-200
Web page: http://www.diw.de/en
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter Tillmann & Maik Wolters, 2014. "The changing dynamics of US inflation persistence: a quantile regression approach," Kiel Working Papers 1951, Kiel Institute for the World Economy.
  2. Lanne, Markku & Luoto, Jani, 2010. "Has U.S. Inflation Really Become Harder to Forecast?," MPRA Paper 29992, University Library of Munich, Germany.
  3. Vasco Cúrdia & Marco Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
  4. van Dijk, D.J.C. & Franses, Ph.H.B.F. & Lucas, A., 1996. "Testing for ARCH in the Presence of Additive Outliers," Econometric Institute Research Papers EI 9659-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  5. Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, 08.
  6. Luca Benati, 2008. "Investigating Inflation Persistence Across Monetary Regimes," The Quarterly Journal of Economics, Oxford University Press, vol. 123(3), pages 1005-1060.
  7. Jordi Gali & Mark Gertler, 2000. "Inflation Dynamics: A Structural Econometric Analysis," NBER Working Papers 7551, National Bureau of Economic Research, Inc.
  8. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
  9. Lof, Matthijs, 2011. "Noncausality and Asset Pricing," MPRA Paper 30519, University Library of Munich, Germany.
  10. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
  11. van Dijk, Dick & Hans Franses, Philip & Peter Boswijk, H., 2007. "Absorption of shocks in nonlinear autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4206-4226, May.
  12. Aksoy, Yunus & Orphanides, Athanasios & Small, David & Wieland, Volker & Wilcox, David, 2003. "A Quantitative Exploration of the Opportunistic Approach to Disinflation," CEPR Discussion Papers 4073, C.E.P.R. Discussion Papers.
  13. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
  14. Clarida, Richard & Gali, Jordi & Gertler, Mark, 1997. "Monetary Policy Rules in Practice: Some International Evidence," Working Papers 97-32, C.V. Starr Center for Applied Economics, New York University.
  15. Stephen Cecchetti & Guy Debelle, 2005. "Has the inflation process changed?," BIS Working Papers 185, Bank for International Settlements.
  16. Hassler, Uwe & Meller, Barbara, 2011. "Detecting multiple breaks in long memory: The case of US inflation," Discussion Paper Series 1: Economic Studies 2011,26, Deutsche Bundesbank, Research Centre.
  17. Bob Nobay & Ivan Paya & David A. Peel, 2010. "Inflation Dynamics in the U.S.: Global but Not Local Mean Reversion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 135-150, 02.
  18. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, 09.
  19. Orphanides, Athanasios & Wilcox, David W, 2002. "The Opportunistic Approach to Disinflation," International Finance, Wiley Blackwell, vol. 5(1), pages 47-71, Spring.
  20. Adam Reiff & Peter Karadi, 2011. "Large Shocks in Menu Cost Models," 2011 Meeting Papers 884, Society for Economic Dynamics.
  21. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
  22. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
  23. Richard H. Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary policy rules in practice," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  24. Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal autoregressions for economic time series," MPRA Paper 32943, University Library of Munich, Germany.
  25. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
  26. Tsong, Ching-Chuan & Lee, Cheng-Feng, 2011. "Asymmetric inflation dynamics: Evidence from quantile regression analysis," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 668-680.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1286. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.